面向智能电网的运检业务全口径日控计划管控风险预警

刘晓光¹ 王德文² 张 建¹ 唐龙波¹ 郑彦军¹ LIU Xiaoguang WANG Dewen ZHANG Jian TANG Longbo ZHENG Yanjun

摘要

由于智能电网系统的复杂性和不确定性,使得其在日常运行过程中不可避免地存在一些安全隐患。为了应对这一挑战,提出了一个面向智能电网的运检业务全口径日控计划管控风险预警系统。通过对智能电网的计划预算、日常运营以及核心业务等多方面的管控数据进行综合分析,以实现对潜在风险的有效预警。具体来说,该系统首先会收集智能电网相关的计划预算数据、日常运营数据以及核心业务数据等,然后对这些数据进行一系列预处理,包括数据清洗和归一化等,以确保数据质量。在数据预处理完成后,系统会构建一个 BP 神经网络模型。通过将预处理后的管控数据输入到 BP 神经网络模型中,系统能够输出智能电网管控风险预警结果。这些预警结果能够帮助运维人员及时发现潜在的安全隐患,从而采取相应的措施进行防范。为了验证该预警方法的有效性,进行了相关的实验研究。实验结果表明,在运检业务全口径日控计划的框架下,智能电网管控风险预警的正确率高达 97.78%。这一高准确率充分证明了所设计预警方法的有效性,为智能电网的安全运行提供了有力的技术支持。通过这一系统,智能电网的运维人员可以更加高效地识别和应对潜在的风险,从而保障整个电力系统的稳定和可靠运行。

关键词

智能电网;运检业务;全口径日控计划;管控风险;风险预警

doi: 10.3969/j.issn.1672-9528.2024.09.048

0 引言

随着全球能源结构的调整和电力需求的不断增长,智能电网作为电力工业的重要发展方向,已经逐渐成为现代电力系统的重要组成部分。智能电网通过集成先进的信息、通信和控制技术,实现对电力系统的智能化监测、优化调度和高效管理,极大提升了电力系统的运行效率和安全稳定性。然而,智能电网的日常运行具有极大的复杂性和不确定性,存在潜在的安全隐患,一旦电网局部或单一设备出现风险,就会造成整个电网的电力故障,所以如何有效预警和管控智能电网的风险,成为当前电力工业领域亟待解决的问题。文献[1]中将云模型和随机森林结合在一起进行电网风险预警,具有较高的预警精度,但是云模型的部署与管理需要较高的技术实力,导致该预警方法在实际应用中可能面临数据丢失、数据篡改等问题。文献[2]中采用一种改进 SVM 进行电网风险的实时评估与预警,可以取得较为准确的预警结果,但是改进 SVM 对参数和核

函数的选择敏感性较高,该方法在实际应用中难以保障预警效果。文献 [3] 中构建一个以总体经济投入和停电损失最小为目标的优化模型,通过求解模型实现电网树障接地风险分区预警,但这种方法往往基于一系列简化的假设来实现,实际应用中可能某些假设条件不成立,导致预警结果不准确。尽管现有研究成果在电网风险预警领域取得了一定的进展,但仍存在一些局限之处。而运检业务全口径日控计划是我国智能电网管控的重要组成部分,通过对运检业务数据的实时监控和分析,可以及时发现潜在的风险因素并采取相应的措施。因此,本文针对面向智能电网的运检业务全口径日控计划管控风险预警展开深入研究,期望可以为我国智能电网的健康运行提供保障。

1 运检业务全口径日控计划收集智能电网管控数据

在智能电网的风险预警与管控中,运检业务全口径日控 计划扮演着举足轻重的角色。这一计划以其全面的视角,深 入细致地覆盖了智能电网的各个方面,从计划预算、日常运 营到核心业务等多个层面,为智能电网的稳定运行提供了坚 实的数据支撑。因此,在应用运检业务全口径日控计划进行

^{1.} 甘肃同兴智能科技发展有限责任公司 甘肃兰州 730000

^{2.} 国网甘肃省电力公司 甘肃兰州 730000

智能电网管控时,首要的任务便是集中力量收集与风险预警 密切相关的智能电网管控数据^[4]。

需要明确智能电网的风险预警与管控是一个高度复杂 且系统化的过程。在这个过程中,运检业务全口径日控计 划发挥了至关重要的作用。它不仅是一个全面、细致的计 划,更是一个动态的、可调整的策略。它可以根据智能电 网的实时运行状态,及时发现问题,预测风险,并采取有 效措施进行管控,从而确保智能电网的安全稳定运行。在 收集智能电网管控数据时,需要注重数据的全面性和准确 性。这包括但不限于智能电网的设备运行状态、能源供需 情况、网络拓扑结构、安全防护措施等多个方面。通过收 集这些数据,可以对智能电网的运行状态进行实时监测和 评估,及时发现潜在的风险和问题,为风险预警和管控提 供有力的数据支撑。

此外,还需要借助先进的技术手段和方法,对收集到的数据进行深入的分析和挖掘。这包括但不限于利用大数据分析、机器学习等技术,对智能电网的运行数据进行建模和预测,从而实现对风险的精准预警和有效管控。通过这些技术手段的应用,可以更加深入地了解智能电网的运行规律和特点,为风险预警和管控提供更加科学的依据。运检业务全口径日控计划在智能电网的风险预警与管控中发挥着至关重要的作用。需要充分利用这一计划的优势和特点,加强数据的收集和分析工作,不断提升风险预警和管控的水平和能力,确保智能电网的安全稳定运行。同时,还需要不断关注新技术和新方法的发展和应用,为智能电网的风险预警和管控提供更加全面、高效的支持。

如图 1 所示,本文运用运检业务全口径日控计划管控智能电网时,收集了包含计划预算、日常运营以及核心业务这三大类别的电网风险预警相关数据 ^[5]。其中,计划预算主要包含了生产、物资、项目以及固定资产等方面的预算数据,主要通过智能电网的财务管控系统购电交易系统等财务类别系统获取,可以全面掌握智能电网的投资规模和资金使用情况。日常运营主要包含了供电能力和台区监测这两方面的数据,主要通过智能电网的调度运行系统获取,可以全面了解智能电网的运行状态和性能表现。核心业务主要包含了故障抢修和停电计划这两方面的数据,主要通过 ERP 系统和 PMS 系统获取 ^[6],可以全面了解智能电网的核心业务执行时长情况。总而言之,本文通过运检业务全口径日控计划收集了智能电网管控数据,为后续风险预警提供数据支持。

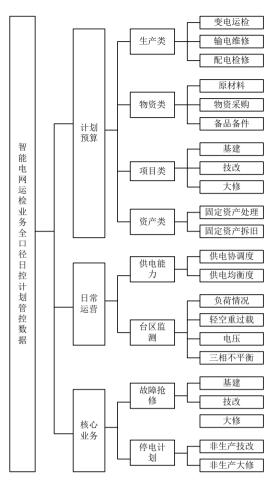


图 1 智能电网运检业务全口径日控计划管控数据

2 预处理智能电网运检业务全口径日控计划管控数据

本文通过运检业务全口径日控计划收集的智能电网管 控数据规模较大且类别较多,实际收集过程中难以保障数据 质量, 所以在利用运检业务全口径日控计划管控数据进行智 能电网风险预警之前,需要对原始管控数据进行一系列预处 理[7]。首先,为消除智能电网运检业务全口径日控计划管控 数据中的缺失值和异常值,需要进行数据清洗。对于缺失值, 为了保持智能电网管控数据的完整性,本文采用插值法进行 缺失值填充处理。这里,本文主要采用均值插值法进行填充 处理,也就是对智能电网运检业务全口径日控计划管控数据 中的缺失值所在行或列进行平均值计算,并将所求均值填充 在缺失值位置处。对于异常值,需要先采用基于统计的方法 进行检测。这里,本文主要采用四分位数法进行异常值检测, 假设原始智能电网运检业务全口径日控计划管控数据集合为 $X = (x_1, x_2, \dots, x_i, \dots, x_n)$, n 为管控数据数量, 其四分位数分别 为 S_1 和 S_2 ,其中 S_1 为上四分位数, S_2 为下四分位数,那么 对于数据点 x_i ,如果其满足下式所示条件之一,则认为其是 异常值:

$$x_i < S_1 - 1.5 \times D \tag{1}$$

$$x_i > S_2 + 1.5 \times D \tag{2}$$

式中: D 表示四分位距,定义为 S_2 - S_1 。那么根据上式所示条件检测出原始智能电网运检业务全口径日控计划管控数据中的异常值之后,直接剔除即可。然后,在智能电网运检业务全口径日控计划管控数据清洗完成之后,为消除不同类别的管控数据之间的量纲差异,需要对数据进行归一化处理 [8],也就是将原始管控数据转换为统一尺度,具体计算公式为:

$$X' = \frac{X - X_{\min}}{X_{\max} - X_{\min}} \tag{3}$$

式中: X'表示归一化处理后的智能电网运检业务全口径日控计划管控数据; X_{min} 、 X_{max} 分别表示原始智能电网运检业务全口径日控计划管控数据的最小和最大值。总之,在智能电网风险预警中,运检业务全口径日控计划管控数据的准确性对于预警结果至关重要,所以本文在通过运检业务全口径日控计划收集了智能电网管控数据后,进行了上述步骤的预处理,以提高数据的准确性和一致性,确保后续预警的有效性和可靠性。

3 构建 BP 神经网络模型预警智能电网管控风险

在根据文中上述内容获得了高质量的智能电网运检业务 全口径日控计划管控数据之后,为解决人工预警方法的效率 差、精度低等问题,本文引入人工神经网络进行智能电网管 控风险预警。人工神经网络具有强大的非线性映射能力和自 学习能力, 在智能电网风险自动预警中具有广阔的应用前 景^[9]。其中,BP神经网络作为一种基于误差反向传播算法的 多层前馈神经网络, 其核心思想是通过不断调整网络参数, 使得网络实际输出的风险预警结果与期望预警结果之间的误 差达到最小,所以成为本文预警智能电网管控风险的首选。 在构建智能电网管控风险预警 BP 神经网络模型时,首先需 要确定神经网络的结构。根据电网风险预警实际情况,本文 构建一个由单输入层、单隐藏层和单输出层构成的网络结构, 每一层之间通过神经元之间的连接权重进行信息传递。对于 各层神经元数量,其中输入层节点数应该和文中上述内容收 集的智能电网运检业务全口径日控计划管控数据样本数量一 致为 n, 输出层节点数则根据预警结果数量来确定。本文以 智能电网管控风险等级为预警模型输出结果, 所以输出层节 点数量与实际电网风险等级数量一致,关键的隐藏层节点数 和本文参数由如下式所示的经验公式来确定:

$$N = \sqrt{n \times m} \tag{4}$$

式中: N表示智能电网管控风险预警 BP 神经网络模型的隐藏层节点数; m表示智能电网管控风险预警 BP 神经网络模型的输出层节点数。在确定了 BP 神经网络结构后,需要进行激活函数的选择。由于智能电网运检业务全口径日控计划管控风险预警计算量较大,本文选择双极 S 形转移函数

tansig 作为隐藏层的激活函数 [10], 其表达式为:

$$f(X) = \frac{2}{1 + e^{-aX}} - 1 \tag{5}$$

式中: f(X) 表示双极 S 形转移函数,其中 X 为模型输入样本, a 为参数。根据上述内容构建出 BP 神经网络模型后,即可进行智能电网管控风险预警。在实际预警中,为保障预警结果的精度,需要先输入智能电网运检业务全口径日控计划管控数据样本进行模型训练,训练过程中以如下式所示误差函数作为模型损失函数:

$$\varepsilon = \frac{1}{2} \sum_{i} (Y_{i} - Y_{j})^{2} \tag{6}$$

式中: ε 表示 BP 神经网络模型输出结果的误差; Y_j 、 Y_j' 分别表示 BP 神经网络模型第 j 层的预设和实际输出。在智能电网管控风险预警 BP 神经网络模型训练过程中,根据式(6)所示误差函数进行模型参数的调整,直至所求误差小于特定值后,停止训练,确定 BP 神经网络模型的最佳参数。最后,将运检业务全口径日控计划管控数据样本输入训练后的 BP 神经网络模型,经过模型学习即可输出智能电网管控风险等级的预警结果,并触发相应的预警机制,以提醒智能电网操作人员及时采取措施降低风险。

4 实验分析

4.1 实验设置

为验证本文所设计的面向智能电网的运检业务全口径日控计划管控风险预警方法的有效性和正确性,以某 500 kV 配电网为实验对象,展开智能电网管控风险预警实验。首先,依据 2020 年实例配电网资料参数,收集多组不同的运检业务全口径日控计划管控风险数据样本,作为本次实验数据,实验样本数据的具体分布情况如表 1 所示。

表 1 智能电网管控风险预警实验样本分布

标签	风险等级	训练样本数	测试样本数
F1	正常状态	100	9
F2	警戒状态	110	11
F3	紧急状态	120	12
F4	系统崩溃	130	13

然后,采用 MATLAB 软件工具箱,进行智能电网管控风险预警实验环境的搭建与仿真。通过各组训练样本数据对本文设计方法、文献 [1] 中方法和文献 [2] 中方法的预警模型分别进行训练,并在训练结束后优化各模型参数,通过优化后的模型进行智能电网管控风险预警的测试,对比测试结果,分析本文设计方法的实际预警性能。

4.2 结果分析

在完成本文设计方法、文献 [1] 中方法和文献 [2] 中方法 下的智能电网管控风险预警测试后,统计并整理各方法下电 网管控风险预警结果,如图2所示。

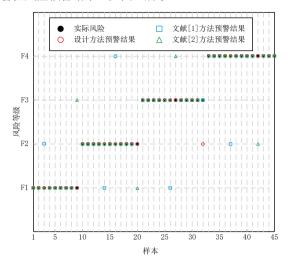


图 2 智能电网管控风险预警实验结果对比

从图 2 中可以看出,在智能电网管控风险预警中,本文设计方法表现出较好的性能,这主要得益于运检业务全口径日控计划涵盖了智能电网运检业务的各个方面,可以从整体上把握智能电网的运行状态,有利于准确发现潜在安全隐患。那么,采用运检业务全口径日控计划进行智能电网管控风险预警时,平均预警正确率高达 97.78%,较文献 [1] 中的方法和文献 [2] 中的方法分别提升了 8.89%、6.67%。因此,运用运检业务全口径日控计划管控智能电网风险是可行且可靠的,进一步验证了本文设计方法是有效且优越的,可以确保智能电网安全稳定运行。

5 结语

在智能电网迅猛发展的背景下,运检业务全口径日控计划管控风险预警的研究显得尤为重要。本文深入探讨了面向智能电网的运检业务全口径日控计划管控风险预警方法,通过收集并预处理相关数据,成功构建了一个 BP 神经网络模型,对智能电网的管控风险进行了有效预警。在实验验证阶段,采用了实际运检业务数据对模型进行了训练和测试。结果表明,该 BP 神经网络模型能够有效地预测智能电网管控风险,并提前发出预警信号。通过与传统的统计方法进行比较发现,该预警方法具有更高的准确性和可靠性。尽管本研究在风险预警方面取得了一定成果,但仍存在一些不足之处。首先,数据收集不全可能导致模型预测结果存在一定的偏差。未来,将进一步优化数据收集和处理流程,尽可能获取更全面、准确的数据。其次,模型的泛化能力还有待提升。将继续研究更先进的神经网络算法,以提高模型的泛化能力和鲁棒性,使其能够适应智能电网日益复杂的运检业务需求。

总之,面向智能电网的运检业务全口径日控计划管控风险预警是一个具有挑战性的研究领域。本文通过构建 BP 神经网络模型,为智能电网的管控风险预警提供了一种有效的

方法。未来,将继续深入研究该领域,不断优化模型性能, 为智能电网的安全稳定运行提供有力保障。

参考文献:

- [1] 魏新迟,董佳,时珊珊,等.基于云模型和随机森林的韧性城市电网风险预警模型[J].电力建设,2024,45(5):19-28.
- [2] 王宁,田家英,董宁,等.基于改进 SVM 的智能电网调控系统实时风险评估与预警技术 [J]. 沈阳工业大学学报,2022,44(1):7-13.
- [3] 姚福星,苗世洪,涂青宇,等.考虑强对流天气的乡镇配电 网树线矛盾风险预警及优化处理[J]. 电工技术学报,2023, 38(22):6188-6203.
- [4] 梁远升,程康,王钢,等.基于概率预测与随机响应面法的新能源孤岛配电网实时风险评估与调控策略[J].电网技术,2023,47(12):4948-4961.
- [5] 徐浩,姜新雄,刘志成,等.基于概率预测的电网静态安全运行风险评估及主动调控策略[J].电力系统自动化,2022,46(1):182-191.
- [6] 庄莉,刘宝升,王秋琳,等.基于边缘计算的变电站风险预警管控系统设计[J]. 电子技术应用,2023,49(4):92-97.
- [7] 张钢, 宗启航, 柯贤波, 等. 基于临界惯量和预想故障的含风电电力系统暂态功角稳定在线预警 [J]. 电力系统保护与控制, 2023,51(16):72-83.
- [8] 钟庆,梁家豪,王钢,等.基于趋势跨度指数的稳态电能质量趋势识别及预警方法[J]. 电网技术,2023,47(5):2139-2148.
- [9] 张浩, 仇晨光, 闫朝阳, 等. 基于人工神经网络的电网运行维护优化决策策略 [J]. 高电压技术, 2023, 49(S1):122-127.
- [10] 程宏伟,高莲,于虹,等.基于注意力机制优化组合神经网络的电力缺陷等级确定方法[J]. 电测与仪表,2024,61(1):83-90+98.

【作者简介】

刘晓光(1974—),男,甘肃武威人,本科,高级工程师,研究方向: 电气工程。

王德文(1988—),男,甘肃金昌人,本科,中级工程师,研究方向: 电气工程及其自动化。

张建(1981—), 男, 甘肃武威人, 本科, 工程师, 研究方向: 计算机科学与技术。

唐龙波(1981—),男,甘肃临夏人,本科,高级工程师,研究方向:电气工程及其自动化。

郑彦军(1991—), 男, 甘肃定西人, 本科, 工程师, 研究方向: 材料成型及控制工程。

(收稿日期: 2024-05-29)