光学遥感卫星高程地图的固化和读取策略

刘 剑 ¹ 邹吉炜 ¹ 孙金傲 ¹ 张晨硕 ¹ 李 玲 ¹ LIU Jian ZOU Jiwei SUN Jin'ao ZHANG Chenshuo LI Ling

摘要

光学遥感卫星在执行拍摄任务时,拍摄点的地程高是计算偏流角和行转移时间的重要参数,影响着图像质量,所以卫星上会预先存储全球范围的高程地图,用以在执行拍摄任务时实时获取拍摄点的地程高信息。针对高程地图的固化和读取,设计了一种方案,通过上位机软件读取高程地图,依据特定的约束条件进行组帧,通过 CAN 总线上注给卫星平台单机,平台单机对 CAN 帧进行接收和解析,将高程信息存储在特定的存储空间,同时进行数据回读并计算 CRC 值,与地面上注的 CRC 进行比较验证。在数据读取时,将目标点的经纬度信息换算成存储空间的地址信息,对目标点临近四个采样点的地程高进行双线性插值法,解算出的地程高作为目标点的地程高。这种固化和读取策略在吉林一号 XX 卫星相机下位机作了验证。实践证明,这种方法正确可靠,对后续卫星高程地图的固化和读取方式有较大的借鉴作用。

关键词

高程地图; CAN 总线上注; 分区存储

doi: 10.3969/j.issn.1672-9528.2024.06.034

0 引言

光学遥感卫星在执行拍摄任务时,需要获取所在位置的 偏流角信息,进行卫星姿态的实时调整。另外,还需要计算 行转移时间,提供给卫星相机分系统作为任务参数。偏流角 和行转移时间计算的一个重要参数是拍摄点的地程高信息。 通常的做法是在上注拍摄任务时,地程高作为任务参数由地 面直接上传给卫星,而单独某一点的地程高信息难以代表整 个拍摄范围的地程高,从而影响图像质量。为了克服这种弊 端,通常在卫星上预先存储全球范围的高程地图,执行成像 任务时实时获取成像点的地程高。

本文针对吉林一号星座 XX 卫星相机下位机提供了一种 高程地图的固化和读取策略,实践证明这种方法正确可靠。

1 存储空间设计

本文涉及的高程地图的固化和读取策略应用于吉林一号 XX 卫星相机下位机。相机下位机采用 12 片 Flash 组成其存储系统,每片 Flash 为 8 MB,相机下位机整个 Flash 存储空间为 96 MB。每片 Flash 由 4 个 Bank 组成, 每个 Bank 的存储空间分别为 8 MB、24 MB 和 24 MB、8 MB,各个 Bank 地址连续,每个 Bank 又划分为不同扇区,扇区划分和扇区空间大小如表 1 所示。相机下位机中 12 片 Flash 的基地址划分如表 2 所示。

表 1 扇区划分及扇区大小

Bank	空间大小	扇区个数	扇区大小
Bank1	8 MB	23	前8个扇区8kB,其余64kB
Bank2	24 MB	48	64 kB
Bank3	24 MB	48	64 kB
Bank4	8 MB	23	后 8 个扇区 8 kB, 其余 64 kB

表 2 Flash 的基地址划分

编号	基地址	地址范围	访问方式	地址空间 / 实 际大小
SECT0	0x20000000	0x20000000 ~ 0x20FFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT1	0x21000000	0x21000000 ~ 0x21FFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT2	0x22000000	0x22000000 ~ 0x22FFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT3	0x23000000	0x23000000 ~ 0x23FFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT4	0x24000000	0x24000000 ~ 0x24FFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT5	0x25000000	0x25000000 ~ 0x25FFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT6	0x26000000	0x26000000 ~ 0x26FFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT7	0x27000000	0x27000000 ~ 0x27FFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT8	0x28000000	0x28000000 ~ 0x28FFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT9	0x29000000	0x29000000 ~ 0x29FFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT10	0x2A000000	0x2A000000 ~ 0x2AFFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB
SECT11	0x2B000000	0x2B000000 ∼ 0x2BFFFFFF	32 bit 访问 /16 bit 有效	16 MB/8 MB

^{1.} 长光卫星技术有限公司综合电子研究室 吉林长春 130022

2 高程地图固化约定

2.1 高程地图的选取

为保证目标点地程高的准确读取,高程地图在相机下位机中采用三模冗余的方式进行存储,同时考虑总体任务需求和相机下位机存储空间大小,合理选取高程地图的范围及分辨率。表4给出了不同高程地图的高程数据地理信息。高程地图要求全球范围内存储,选用像元分辨率为10km的全球范围的高程地图。地图大小为17.7MB,共有4320×2160个采样点,经纬度分辨率为0.083°×0.083°,以int16数据类型存储,低八位在前,高八位在后,按列存储。

左上角点经纬度 数据栅格大小 每个栅格经纬度 地图大小 纬度范围 数据名称 (经度, 纬度) (宽×高) (经度×纬度) [90.00N, DEM 1km.raw 1.73 GB [90.00N, 180.00W] $43\ 200 \times 21\ 600$ $0.0083^{\circ} \times 0.0083^{\circ}$ 90.00S1 [90.00N, DEM_7km.raw 36.3 MB [90.00N, 180.00W] 6172×3086 $0.0583^{\circ} \times 0.0583^{\circ}$ 90.00S] DEM_7km_80deg. [80.00N, 32.2 MB [80.00N, 180.00W] 6172×2743 $0.058\ 3^{\circ} \times 0.058\ 3^{\circ}$ 80.00S] raw DEM 7km 60deg. [60.00N, 24.2 MB [60.00N, 180.00W] 6172×2058 $0.0583^{\circ} \times 0.0583^{\circ}$ 60.00S] raw [90.00N, $0.083^{\circ} \times 0.083^{\circ}$ DEM 10km.raw 17.7 MB [90.00N, 180.00W] 4320×2160 90.00S]

表 3 高程数据地理信息

2.2 高程地图在 Flash 中的存储

高程地图示意图如图 1 所示,高程地图以零度经度和赤道交点为图像的几何中心点,最左上点为图像存储的第一个采样点,该点经纬度坐标为 (90,0) (纬度在前,经度在后),定义该点的像素点坐标为 (0,0),角度坐标为 (0,0)。

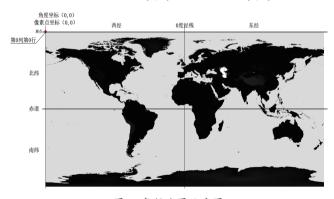


图1 高程地图示意图

一片 Flash 无法存入一幅完整的高程地图,故将高程地图进行拆分,存入不同的 Flash 中。按列将高程地图等拆分为三部分,第一部分为第 $0 \sim 1439$ 列,第二部分为第 $1440 \sim 2879$ 列,第三部分为第 $2880 \sim 4319$ 列,具体拆分方法和在 Flash 的存储如表 4 所示。

表 4 高程地图拆分方法和在 Flash 的存储

Flash 编号	存储内容	存储空间	存储方式
SECT0	0 1420 70	0x200000000 ∼	1 个采样点 /4 个
SECTO	0~1439 列	0x20BDD800	地址空间
SECT1	1440 2070 7	$0x210000000 \sim$	1 个采样点 /4 个
SECTI	1440~2879 列	0x21BDD800	地址空间
SECT2	2880~4319 列	0x220000000 ∼	1 个采样点 /4 个
SEC12	2000~4319 7J	0x22BDD800	地址空间
SECT3	0 1420 Fel	0x230000000 ∼	1 个采样点 /4 个
SEC13	0~1439 列	0x23BDD800	地址空间
SECT4	1440~2879 列	$0x240000000 \sim$	1 个采样点 /4 个
SEC14	1440~28/9 91	0x24BDD800	地址空间
SECT5	2880~4319 列	$0x250000000 \sim$	1 个采样点 /4 个
SEC13	2000~4319 <i>9</i> 1	0x25BDD800	地址空间
SECT6	0~1439 列	$0x260000000 \sim$	1 个采样点 /4 个
SECTO	U~1439 ŊI	0x26BDD800	地址空间
SECT7	1440~2879 列	$0x270000000 \sim$	1 个采样点 /4 个
SEC1/		0x27BDD800	地址空间
SECT8	2880~4319 列	0 x280000000 \sim	1 个采样点 /4 个
SECTO	2000~ 4 319 7¶	0x28BDD800	地址空间

每个采样点 2 个字节,每 4 个地址空间存储一个采样点,高位在前,低位在后。SECT0、SECT3、SECT6 存储高程地图的前 1440 列,SECT1、SECT4、SECT7 存储高程地图的中 1440 列,SECT2、SECT5、SECT8 存储高程地图的后 1440 列,数据从 Flash 首地址开始连续按列存储,当片 Flash 剩余空间保留。

2.3 数据帧格式

高程地图分三次进行固化,第一次

固化 $0 \sim 1439$ 列,第二次固化 $1440 \sim 2879$ 列,第三次固化 $2880 \sim 4319$ 列。为确定数据在 Flash 中的具体存储位置,帧格式中必须包含当前帧所在列编号及帧编号,数据帧格式的具体定义如表 5 所示。

表 5 数据帧格式定义

仲裁	$ID28 \sim ID21$	D6H	帧 ID	
	ID20 \sim ID13	帧编号	当前列的帧编号(0	
域	ID12 \sim ID05	ツ細 与	~ 719)	
	ID04 \sim ID00	00H	保留	
	$\mathrm{DATA0}\sim\mathrm{DATA1}$	列编号	列编号 (0 ~ 4319)	
数据	$\mathrm{DATA2}\sim\mathrm{DATA3}$	采样点1数据	每一个数据帧携带3	
域	DATA4 \sim DATA5	采样点2数据	个采样点信息, 高位	
	DATA6 \sim DATA7	采样点3数据	前, 低位后	
	发送条件	上位机发送。		
使用说明	处理要求	接收到该帧后: 1. 将帧数据存储到高程地图固化 FIFO; 2. 判数当一列数据发送结束时,将该列数据存入 Flash 相应位置。		

高程地图通过上位机软件进行读取并组帧,通过 CAN 总线发送给相机下位机,相机下位机接收到数据后提取 CAN 帧中的帧编号和列编号,计算出该采样点在 Flash 中的存储

地址。将数据存储到相应位置,每存储完 10 列数据,将发送一帧 CRC 校验帧。下位机软件接收到校验帧后,立刻对固化的 10 列数据进行回读,计算回读数据的 CRC 校验值,与上传的 CRC 进行对比,两者一致,说明数据上传存储正确,并将 CRC 通过 CAN 总线返回给上位机软件,通过串口调试助手将上传正确信息打印出来。根据列编号和帧编号解析每个采样点在 Flash 中的存储位置,对应关系如表 6 所示。

表 6 采样点在 Flash 中的存储位置

列编号L	所存储的 Flash	帧编号N	采样点	存储位置
<0, 1439>	SECTO、 SECT3、SECT6		采样点1	基地址 + (L*2160+N*3) *4
<1440, 2879>	SECT1、 SECT4、SECT7	帧编号 N	采样点2	基地址 + (L*2160+N*3) *4+4
<2880, 4319>	SECT2、 SECT5、SECT8		采样点3	基地址 + (L*2160+N*3) *4+8

3 高程地图读取方法

地球不同地点的纬度和经度具有不同的正负值,若以高程地图左上点为坐标原点,水平向右为 X 轴正向,水平向下为 Y 轴正向建立像素点坐标系,则可将地球上任一点的经纬度坐标转换成角度坐标,对应关系如表 7 所示。

表 7 经纬度坐标与角度坐标的转换关系

P 点位置	经纬度坐标 (X,Y)	角度坐标 (x,y)
(北纬, 东经)	(+, +)	(90- 纬度,180+ 经度)
(北纬, 西经)	(+, -)	(90- 纬度,180+ 经度)
(南纬, 东经)	(-, +)	(90- 纬度,180+ 经度)
(南纬, 西经)	(-, -)	(90- 纬度,180+ 经度)

通过分析可知,无论 P 点位置如何,经纬度坐标转换成角度坐标规则相同。

采样间隔 10 km 全球采样的高程地图的角度分辨率为 lati_Reso×long_Reso=0.083°×0.083°。由于数据存储的精度 限制,角度分辨率为近似值,这种误差通过累积,使得在 X 轴方向,理论上角度为 120° 的第 1440 列、角度为 240° 的第 2880 列和角度为 360° 的第 4320 列的计算角度低于理论值,在 Y 轴方向,理论上角度为 180° 的第 2160 行的计算角度低于理论值,因此将全球范围分成 7 个 PART 区域,每个 PART 区域的采样点分别求取地程高。PART 区域的划分如图 2 和表 8 所示。

表 8 区域范围划分

区域	角度范围
PART1	0 ∼ (1439 × long_Reso)
PART2	(1439×long_Reso) ∼ 120
PART3	$120 \sim (1439 \times long_Reso+120)$
PART4	(1439×long_Reso+120) ∼ 240
PART5	240 ~ (1439 × long_Reso+240)
PART6	(1439×long_Reso+240) ∼ 360
PART7	(2159×lati_Reso) ∼ 180

通常已知目标点的经纬度信息,求取目标点的经纬度信息可分为以下7步。

- (1) 根据目标点经纬度坐标 (X,Y) 确定角度坐标 (x,y): (x,y) = (90-X,180+Y) (1)
- (2) 确定目标点所在 PART 区域。
- (3) 求出目标点所在的行和列: Line=y/lati Reso

Row=x/long Reso

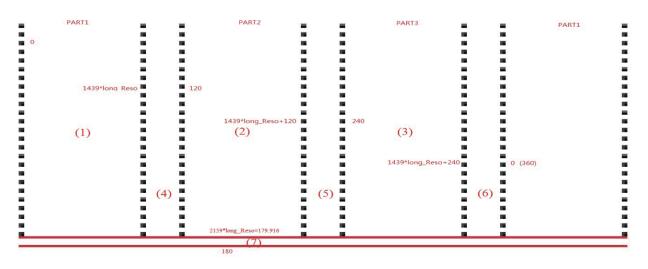


图 2 PART 区域的划分

(4) 求出目标点邻近四点的像素点坐标:

左上: [floor(Line),floor(Row)]

右上: [floor(Line),ceil(Row)]

左下: [ceil(Line),floor(Row)]

右下: [ceil(Line),ceil(Row)]

- (5) 计算邻近四点在 FLASH 中的存储地址。
- (6) 获取邻近四点的高程信息。
- (7) 根据双线性插值法求出目标点高程信息。

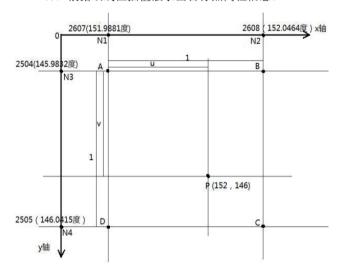


图 3 目标点地程高求取示意图

公式:

$$f(i+u,j+v) = (1-u)(1-v)f(i,j) + u(1-v)f(i+1,j)$$

$$+v(1-u)f(i,j+1) + uvf(i+1,j+1)$$
(2)

- (a) 区域 PART1、PART2、PART3 中的目标点,用对应区域中的采样点求:
- (b) 区域 PART4 中的目标点,用 PART1 最后一列和 PART2 第一列内的采样点求;
- (c) 区域 PART5 中的目标点,用 PART2 最后一列和 PART3 第一列内的采样点求;
- (d) 区域 PART6 中的目标点,用 PART3 最后一列和 PART1 第一列内的采样点求;
- (e) 区域 PART7 中的目标点,用第 2158 行和第 2159 行内的采样点求。

由于地球表面存在大量海洋区域,高程地图上,海洋区域的地程高用极小值表示,故凡所求高程低于-100 m,按-100 m 计算。

4 功能验证

对地球上典型位置地程高进行求取验证,所求高度和实际高度对比如表 9 所示。

表 9 典型位置所求高度和实际高度对比

纬度	经度	实际高程/m	所求高程/m	误差 /%
37.157 6N	87.081 9E	4203	4459	6.1
1.032 5N	21.190 8E	403	405	0.5
34.171 1N	115.913 2E	36	34	5.6
44.954 8N	124.276 3E	125	134	7.2
25.107 9S	21.253 9E	1026	1024	0.2
44.296 3S	69.704 5W	998	1018	2.0

从测试结果可以看出,所求地程高与实际接近,上述测试点中最大误差为7.2%,误差大小与目标点地势有关。

5 结论

本文设计了一种高程地图固化和读取策略,通过 CAN 总线对高程地图进行分批上注,并携带 CRC 信息对固化数据 进行实时校验,给定目标点经纬度信息,通过地址查找,利用双线性插值法求取目标点地程高。通过在吉林一号 XX 卫星上进行验证,证明该方法正确有效,在选取的典型测试点中,所求地程高和实际地程高最大误差不超过 7.2%,误差大小与目标点地势有关。

参考文献:

- [1] 吴元伟,刘广君,经富贵.基于高程地图的雷达导引头杂波下作战性能仿真方法 [J]. 火控雷达技术,2022,51(1):21-26.
- [2] 潘一源. 稠密高程地图构建和地点重识别 [D]. 杭州: 浙江 大学,2021.
- [3] 何海周,袁金梅,刘攀锋,等.一种基于高程信息的遥感地 图分析方法:CN202310167944.7[P].2023-05-16.
- [4]RAHUL R. Use of cartosat-1 elevation data for local-scale terrain studies in India:a case study[J].International journal of cartography, 2023,9(1):87-96.
- [5] 张无央, 许梦莹, 彭明, 等. 高程地图的边界识别方法、拼接方法及系统、设备及介质: CN202110139685.8[P]. 2022-11-01.
- [6] 熊小东,邱靖烨,任海兵,等.一种构建高程地图的方法及 装置: CN114440902A[P].2022-05-06.

【作者简介】

刘剑 (1990—),通信作者 (1051690747@qq.com),男,辽宁葫芦岛人,硕士研究生,硬件工程师,研究方向: 嵌入式系统、自动控制等。

(收稿日期: 2024-04-11)