基于 SeeTaFace6 的高校多人脸识别智能考勤系统

刘宏昊¹ 尹四清¹ LIU Honghao YIN Siqing

摘要

针对高校学生上课考勤签到时间长、签到影响正常授课效率、考勤数据偏颇问题,设计了一种基于SeeTaFace6 人脸识别模型的多人脸识别智能考勤系统,可以有效提高高校师生的考勤效率,为正常授课提供更多时间。采用 Java 中的 JNI 技术将 SeeTaFace6 模型封装成人脸识别算法库,使用 SpringBoot 作为后端框架,Vue 作为前端框架,基础信息数据采用 MySql 进行存储,人脸关键点等信息的存储则采用入库存储与缓存结合的方式。所设计的系统交互性良好,多人脸识别成功率高,时间快,实用性高,可为高校中的同类考勤系统设计提供借鉴。

关键词

SeeTaFace6;智能考勤;多人脸识别;签到系统;响应式布局

doi: 10.3969/j.issn.1672-9528.2024.07.043

0 引言

在高校考勤中,考勤系统主要扮演着监督学生出勤情况、维护教学秩序的重要角色。而现有的高校签到打卡软件的质量与效果却参差不齐,例如人工等传统方式耗时耗力,通过单一人脸识别与位置识别则会出现漏签、代签等问题。在这一背景下,基于 SeeTaFace6 的高校多人脸识别智能考勤系统应运而生,其独特之处在于能够实现一张照片拍摄、多个人脸同时识别的功能。这一技术不仅极大地提高了考勤的效率和准确性,而且极大地方便了师生,使得考勤过程更加快速、简便。

现有考勤方式主要包括人工签到、校园卡门禁系统、手机单一面容或位置签到三种形式。

人工签到是最原始的考勤方式,学生在规定的考勤时间 段内,找到相关负责人在事先打印的签名表上签上自己的出 勤信息。这种方式效率低下,需要专人监督,浪费大量时间, 且由于存在人为因素,容易出现不公平的情况,如代签、漏 签等。

随着信息技术的飞速发展,传统的人工签到方式正逐步被更加高效、便捷的校园卡门禁系统所取代,成为主流的考勤手段。文献 [1] 所述基于 RFID 和单片机的考勤系统因其便捷性而受到广泛关注。这种系统允许学生通过简单地刷校园卡来完成考勤,极大提升了考勤的效率和减少了人力资源的消耗。然而,尽管这种打卡方式带来了诸多便利,但它也存在一些不容忽视的局限性。首先,由于系统通常只识别卡片

1. 中北大学软件学院 山西太原 030051 [基金项目] 山西省研究生实践创新项目 (2023SJ223) 而非持卡人本身,这可能导致代打卡现象的出现,即非持卡 人使用卡片进行考勤。此外,如果校园卡不慎丢失或被盗用, 也会给考勤管理带来极大的困扰和挑战。

目前大多数高校使用手机等移动设备签到,诸如钉钉、超星等签到软件。文献 [2] 提出了基于微信小程序的学生考勤系统,这种方式采用了学生单一人脸面容,同样提高了考勤效率,但也存在一些问题,如学生单一面容主动识别签到耗时较多,影响课堂效率;教师无法确认学生是否真是在课堂上签到的(无攻击人脸检测),且即使运用了人脸识别技术,也为单人脸识别。

多人脸识别智能考勤系统作为一种新兴的考勤方式,在 高校管理中的应用具有显著的必要性和优势。在此之前,多 人脸识别作为人脸识别领域的一个重要组成分支,在公共安 全、身份验证以及智能监控等领域,都已显示出广泛的应用 潜力^[3]。

首先,多人脸识别技术能够同时处理多个人脸信息,显著提高了考勤的效率。在人数众多、时间紧迫的高校环境中,传统考勤方式往往需要逐一核对身份,耗时且效率低下。而多人脸识别技术则能够在短时间内完成大量学生的签到工作,有效节约了排队等待的时间,提升了整个考勤流程的效率。

其次,多人脸识别技术具备高度的准确性和可靠性。通过 SeeTaFace6 人脸识别算法和图像处理技术,系统能够精确识别照片中的人脸信息,并与数据库中存储的信息进行比对,从而实现快速、准确签到。这一技术不仅能够有效避免代签、漏签等问题的发生,还能够为高校教学管理提供准确的数据支持。

此外,多人脸识别智能考勤系统还具备出色的灵活性和

可扩展性。系统可以根据高校的实际需求进行定制和扩展,满足不同教学管理场景下的需求。同时,系统还可以与其他教学管理系统进行无缝集成,实现数据的共享和交换,进一步推动高校教学管理的智能化发展。

综上,高校多人脸识别智能考勤系统不仅提高了考勤的 效率和准确性,还加强了校园的安全管理,为高校管理带来 了极大的便利。

1 SeeTaFace6 多人脸识别模型

SeeTaFace6^[4] 引擎由中科院计算所山世光研究员团队精心研发,该算法以深度学习为基础,通过多层卷积神经网络(CNN)^[5] 学习人脸图像特征,实现对 1 或 N 个人脸准确识别与分类。该算法基于 C++ 的全自动人脸识别模型,完全独立于任何第三方库函数。作为一套完整的技术模块集,其开源特性使其成为人脸识别行业的基准系统,在确立行业标准方面发挥着至关重要的作用。SeeTaFace6 以其代码完整、易于移植以及优化潜力大等特点而闻名。

SeeTaFace6 人脸识别引擎涵盖了人脸自动识别系统的关键步骤,包括人脸检测、对齐和特征提取与比对 ^[6]。在人脸检测模块中,采用了多层级的级联结构,如图 1 所示,以实现高效且鲁棒的人脸检测。顶部结构由多个快速 LAB 级联分类器组成,经过训练可应对不同姿态下的人脸变化,确保在各种场景下准确捕获人脸区域;中间结构利用基于 SURF 特征 ^[7] 的多层感知机(MLP)进行进一步的特征提取和分类,通过学习人脸的深层特征提升了检测的准确性;结尾部分采用统一的基于 SURF 特征的 MLP 级联结构,处理所有姿态的候选窗口,通过特征比对和分类确定人脸的位置和边界。本文设计形成了一个宽顶窄底的锥形结构,保证了检测速度和精度。

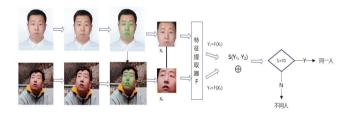


图 1 Seetaface6 人脸识别系统流程

当用户获取到图像后,进行自适应直方图均衡化(灰度平衡)、图像锐化(轮廓增强)和Retinex 暗度增强(HDR处理)处理^[8],接着使用RetinaFace 算法进行检测。RetinaFace^[9] 是一种单阶段的人脸检测算法,它使用自我监督和联合监督两种方式进行多任务学习,可以在不同尺度上实现像素级别的检测和定位。根据预测结果判断先验框内是否有人脸,并调整这些先验框,以获得最终的预测框。提取五个关键点位置:左眼、右眼、鼻尖、左嘴角和右嘴角。这五个关键点的位置是通过对先验框中心进行偏移来确定的,图 2 为 retinaface 的五点模型标识在多人脸环境下的表现。

图 2 Retinaface 的五点模型标识在多人脸环境下表现

2 系统概要设计

2.1 系统总体结构

系统总体框架分为五个层次,分别为展示层、应用层、 服务层、数据层与基础设施层,如图 3 所示。

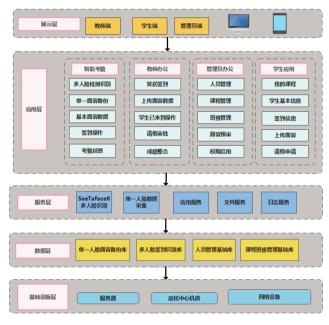


图 3 系统总体结构

其中,应用层包含管理员端、教师端、学生端三个模块,主要实现的功能有:管理员、教师、学生的登录;管理员端对教师、学生、课程、班级、授课等信息的增删改查;教师上传班级合照进行签到,并可与签到结果自行调整;个人信息、授课信息查看;学生上传个人信息、个人正脸证件照用于人脸识别,学生收到签到结果,可进行补签申请;学生个人信息、上课课程表的查看;教师进行学生补签资格审查;教师进行学生成绩上传、修改和其他与签到相关的操作。为了方便教师实时进行考勤操作,并开发了手机端。当教师打开软件,点击考勤按钮时,即可进行拍摄学生合照,进行考勤操作。

服务层包含了由 JNI 技术封装好的 SeeTaFace6 多人脸识别模型,进行多人脸识别与单一人脸数据的获取、录入等。

数据层包括单一人脸面容存储,历次多人脸识别签到数据存储,人员、课程、班级基础库,采用 MySql、Redis、OSS 对象存储服务器进行存储。

2.2 数据结构设计

2.2.1 人脸信息数据

学生个人上传自己的正脸面容,以供 SeeTaFace6 模型读取,并获取各项指标参数,待之后识别签到使用。学生面容信息表包括学生 ID、注册时生成的 ID、图片文件名称、备注、注册面容备注、注册面容时间、人脸位置、人脸关键点、人脸向量特征数组、是否遮挡、是否为进攻性人脸、姿态估计、亮度评估、清晰度评估、靠近图像边缘度、性别评估等,如表 1 所示。

表 1 人脸信息数据

字段名称	字段类型	备注		
ID	字符串	主键		
PicturePath	字符串	串 存入 0SS 对象存储服务器中		
RegisteredFaceTime	时间	注册面容时间		
FacePosition	字符串	人脸位置		
FaceKeyPointsFive	字符串	5 点关键点		
FaceKeyPointsSixtyFour	字符串	64 点关键点		
FaceVectorFeatureArray	字符串	人脸向量特征数组		
IsOcclusion	整形	是否遮挡		
OffensiveFace	整形	是否进攻人脸		
AttitudeEstimation	字符串	姿态估计		
BrightnessEvaluation	字符串	亮度评估		
ArticulationEvaluation	字符串	清晰度评估		
GenderAssessment	整形	性别评估		

2.2.2 考勤数据

学生签到表包括 ID、学生 ID、签到 ID、是否签到,如表 2 所示。

表 2 学生考勤数据

字段名称	字段类型	备注		
ID	字符串	主键		
StuID	字符串	学生学号		
RegisteredTime	时间	创建时间		
IsCome	整形	是否来到,0为未到,1为来到		

3 系统详细设计

3.1 多人脸识别签到模块

对于学生用户来说,首次使用需注册人脸,后期使用无需注册,以便之后的学生个人证件照人脸识别,人脸数据的写入;对于教师来说,首次使用时,需要将本班学生证件照上传,以便统计本班学生的面容数据信息。之后就可进行上传合照、批准请假等系列操作。

3.2 课程成绩与请假补签模块

当教师进行签到后,出现未到的学生时,其学生端相关课程会出现未到展示。此时,学生可进行请假申请。教师端通过上传合照进行考勤后,尤其在学期末,将历次考勤结果与课程的平时成绩挂钩,通过上传表格或手动输入等方式键入期末成绩。调整考勤成绩与课程期末考试成绩的相关比例后,生成最后的综合期末成绩,课程成绩模块流程图与学生

请假补签模块流程图如图 4 所示。

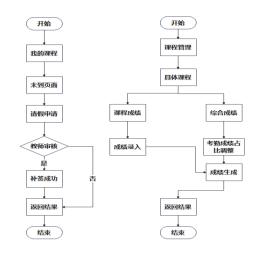


图 4 课程成绩与学生请假补签模块流程图

4 系统实现

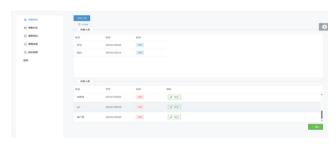
4.1 管理员端

管理员可进行教师与学生、授课课程、班级等信息的添加、修改、删除、启用等操作,如图 5 所示。

图 5 管理员端系统实现

4.2 教师端

本班级所教课程用于多姿态面容对比的正面证件照,当 学生证件照更新时,可点击上传至阿里云 OSS 对象存储服务 器,并使用 SeeTaFace6 人脸识别框架进行人脸数据(如人脸 特征向量、人脸关键点等数据)的计算并存储。如图 6 所示。


图 6 教师端面容检验与上传界面

教师端通过班级号从阿里云 OSS 对象存储服务器 [10] 中取出班级内所有证件照进行人工检查,确定无误后,点击确定上传。后台接收到上传请求,将班级内所有证件照制作成

压缩包,通过 Rest HTTP 请求发送到人脸识别服务器。人脸识别服务进行特征值的提取,并保存数据库,等待考勤多人脸识别时提取。当教师进行签到操作时,可通过 Web 端上传已经拍摄好的班级照片,手机端可直接拍摄,经后台封装好的多姿态人脸识别接口,收到考勤请求,携带班级号、考勤号等标识以及考勤合照,发送 HTTP POST 请求到人脸识别服务器进行处理。保存数据库,并在前端页面显示来到情况。如图 7 中(a)所示。当获取到当次的学生来到数据后,教师也可就实际情况对未来到同学进行手动来到操作。如图 7 中(b)所示。

(a) 教师端考勤签到第一步

(b) 教 师端考勤签到第二步 图 7 教师端考勤签到步骤

4.3 学生端

学生端包括学生端欢迎页展示简单课程信息、考勤数据等;对于学生个人信息,学生可进行修改,并上传个人正面照进行数据预先处理识别、存储;我的课程页面展示学生所有课程,点击进入详情页面可查看学生历次考勤信息、是否来到情况,若出现"未到"信息,可进行请假申请,发送到教师端。

5 系统效果测试

为验证本系统的可行性,将FaceNet、SphereFace、InsightFace 算法嵌入到系统中进行测试,以准确率(正确识别的人脸与总人脸数的比例),速度(人脸检测、特征提取和比对的时间),鲁棒性(在不同场景、角度、光照和表情变化下的识别性能),可扩展性(系统处理多个人脸及大规模数据的能力),实时性(系统在实际应用中的响应时间)作为评测指标,以山西省某高校软件学院学生真实上课数据为测试数据。测试效果如表 3。经测试后,本系统在准确率、响应时间等指标方面均处于上游,可行性极高。

表 3 系统效果测试比对

算法/方法	准确率 /%	平均识别 时间/ms	系统响应 时间/ms	鲁棒性测 试得分	实时性
FaceNet	90.5	85	105	8.5/10	中
SphereFace	92.3	100	120	8.0/10	低
InsightFace	93.8	93	113	8.5/10	中
本系统	94.2	90	100	9.0/10	高

6 总结

本文提出了一种基于 SeeTaFace6 的多人脸识别智能考勤系统。该系统通过整合先进的人脸识别技术与高校考勤需求,有效解决了传统考勤方式中的签到时间长、签到过程影响授课、考勤数据不准确等问题,提高了考勤的效率和准确性,极大地提升了用户体验,使得考勤过程更加快速、简便。系统设计充分考虑了高校考勤的实际情况,满足了管理员、教师和学生三个主要用户群体的需求,实现了考勤相关信息增删改查、多人脸识别签到、课程关联与请假补签等功能,系统交互性强且实用。尤其是多人脸识别技术的应用,使得考勤过程更加智能化,有效防止了代签、漏签等,同时与其他算法的嵌入系统进行效果比对,为高校教学管理提供了有力的数据支持。

参考文献:

- [1] 陈金萌,张佰顺,彭方成.基于 RFID 和单片机的考勤系统的设计 [J]. 电子测试,2020(19):14-17.
- [2] 刘琼,史诺,刘康.基于微信小程序的学生考勤系统的设计与实现[J]. 微型电脑应用.2023,39(1):173-176.
- [3] 张庆辉, 张媛, 张梦雅. 有遮挡人脸识别进展综述 [J]. 计算机应用研究,2023,40(8):2250-2257+2273.
- [4]SEETAFACEENGINE.SeetaFace6[EB/OL].(2020-03-30) [2024-03-13].https://github.com/seetafaceengine/SeetaFace6.
- [5] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J]. 计算机 学报,2017,40(6):1229-1251.
- [6]YILIHAMU D, DILIZHATI Y, PALIDAN T, et al.A real-time face tracking and recognition system based on seetaface[J]. Journal of physics:conference series,2020,1673(1):012043.
- [7] 赵谦, 童申鑫, 贺顺, 等. 改进的 SURF-RANSAC 图像匹配算法 [J]. 计算机工程与设计,2021,42(10):2902-2909.
- [8] 林成创,单纯,赵淦森,等. 机器视觉应用中的图像数据增广综述[J]. 计算机科学与探索,2021,15(4):583-611.
- [9] 牛作东, 覃涛, 李捍东, 等. 改进 RetinaFace 的自然场景口 罩佩戴检测算法 [J]. 计算机工程与应用, 2020, 56(12):1-7.
- [10] 王伟丽,夏滨,谢晓钟. 阿里云视觉智能平台图像识别的应用研究[J]. 机电技术,2022(6):27-29+32.

【作者简介】

刘宏昊(2000—), 男, 山东济南人, 硕士研究生, 研究方向: 图形图像处理、软件开发。

尹四清(1964—), 男, 山西长治人, 硕士, 副教授, 研究方向: 自然语言处理、大数据挖掘与智能推荐。

(收稿日期: 2024-05-10)