基于知识及流利度提升的中文语法纠错模型

王 岩 ¹ 梁椰玲 ¹ WANG Yan LIANG Yeling

摘要

语法错误纠正(grammatical error correction,GEC)旨在将包含语法错误的句子纠正为正确的句子。目前语法错误纠正研究主要基于 Transformer 模型,但由于模型参数规模大,中文 GEC 任务语料不足,Transformer 无法得到充分训练来学习文本中足够的语义信息。提出了基于知识及流利度提升策略的中文 GEC 模型,将 MacBERT 预训练模型作为外部知识来源,并利用流利度提升策略缓解 GEC 模型单轮推理纠错不完全的局限。为了验证所提出的 GEC 模型的有效性,在 NLPCC 2018 中文 GEC 共享任务数据集上进行了大量实验,其性能优于 NLPCC 2018 GEC 共享任务中开发的最佳模型。

关键词

中文语法纠错: Transformer 模型; 知识增强学习; 流利度提升策略; 预训练语言模型

doi: 10.3969/j.issn.1672-9528.2024.05.023

0 引言

中文语法纠错的目的是自动检测并纠正句子中包含的语法错误,包括句子中的选词(word selection,S)、冗余词(redundant words,R)、缺词(missing words,M)和词序(word order,W)错误。基于编码器 - 解码器架构的 Transformer^[1]模型已成为 GEC 任务中的主流方法,该模型通过注意力机制进一步提高 GEC 的性能。目前,该方法存在两个局限性:泛化能力差以及无法纠正句子中的多个错误^[2]。

预训练语言模型(pre-training language models,PLMs)在自然语言处理任务中取得了较大的成功。BERT 作为最成功的PLMs 模型之一,已被应用于GEC 任务,并在性能上取得了实质性的改进^[3]。掩码语言模型(MLM)BERT 建立在Transformer 模型的编码器架构上。MLM 采用 [MASK] 符号随机遮盖输入序列,并利用上下文预测被遮盖的词,促使模型提取训练语料库中的各种语言特征。然而,在GEC 模型的训练过程中不会出现 [MASK] 符号,并且BERT 的预训练语料库与GEC 任务的训练语料差异很大,因此 MLM 既不能适应 GEC 任务,也不能适应 GEC 语料库中特殊的语法错误部分。BERT 和GEC 任务之间的差距使得基于BERT 的GEC模型无法充分利用BERT 中的语言知识。

MacBERT^[4] 采用 Mac(MLM as correction)任务进行预训练,使用相似的单词来遮盖单词,取代 BERT 原始的MLM 任务,相较于 MLM 任务采用 [MASK] 符号遮盖单词,Mac 任务更接近于 GEC 任务。Mac 预训练任务填补了预训练任务与下游 GEC 任务之间的空白,促使 GEC 任务尽可能

1. 郑州科技学院信息工程学院 河南郑州 450064

多地利用 MacBERT 中的知识信息,因此基于 MacBERT 的方法有望提高 GEC 任务的性能。

为了解决 GEC 模型中存在的局限性,本文提出了一个基于知识及流利度提升策略的 GEC 模型(KFPGECM)。该模型通过采用预训练语言模型 MacBERT 提供的语言知识以及流利度提升策略,在 NLPCC2018 GEC 共享任务测试集上 $F_{0.5}$ 值达到 31.88,优于共享任务中的 Top-3 模型。为了进一步改善 KFPGEC 模型的性能,使用构造数据扩充训练语料对模型进行训练,并进行模型集成,纠错性能进一步得到提升。

1 KFPGEC 模型原理

在本研究中,提出了一个基于编码器-解码器架构的中文 GEC 模型,该模型将预训练语言模型 MacBERT 与流利度提升策略相结合,并将语言生成过程分为两个阶段:知识增强学习阶段和流利度促进推理阶段。

知识增强学习采用 MacBERT 作为 GEC 任务的知识来源。 MacBERT 采用 Mac 作为预训练任务,使用相似词替换部分词, 并根据上下文预测被覆盖的词,该任务更接近于中文 GEC 任 务。因此,在中文 GEC 任务中引入 MacBERT,可以减少预 训练任务与 GEC 任务之间的差距所带来的负面影响,最大 限度地提高 GEC 任务对语言知识的有效利用。在神经机器 翻译研究的启发下,流利度促进推理通过对语句进行多次 推理,执行多轮纠正,直至句子流利度不再提升,进而改善 GEC 性能。

1.1 知识增强学习

分别探索了通过融合^[5](MacBERT-fuse)及初始化^[6-7](MacBERT-init)两种知识引入策略,将 MacBERT 预训练

模型引入纠错任务中。

1.1.1 MacBERT-init

为了利用 MacBERT 学习到的已有知识,采用初始化策略将 MacBERT 中的语言知识引入 Transformer 模型中。首先对其解码器采用随机初始化的方法,因为 MacBERT 预训练模型基于 Transformer 模型编码器进行构建,架构相同,所以使用 MacBERT 学习到的权重对 Transformer 编码器进行初始化。MacBERT-init 结构如图 1 所示。

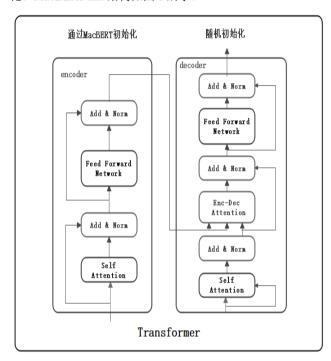


图 1 MacBERT-init 策略

1.1.2 MacBERT-fuse

通过融合策略,将 MacBERT 引入 Transformer 的编码器 -解码器架构中。首先获得 MacBERT 最后一层的特征表示,然后通过注意力机制将其与编码器 -解码器每一层进行融合,以确保充分利用 MacBERT 中预训练的知识信息,如图 2 所示。

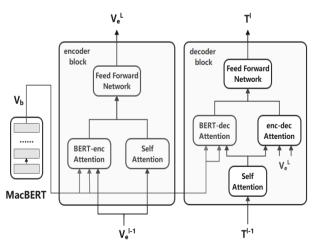


图 2 MacBERT-fuse 策略

X和 Y分别表示输入序列和输出序列。输入序列 X通过 MacBERT 编码得到 V_b : $V_b = MacBERT(X)$, V_b 是 MacBERT 最后一层的输出。 V_e^l 表示编码器第 l 层的隐藏表示, V_i^l 表示 V_e^l 中的第 i 个元素,其中 i \in $[l_x]$, ATT_{self} 表示编码器中的自注意力机制, ATT_{onc} 表示编码器注意力机制,则 V_i^l 的计算公式为:

$$V_{i}^{l} = \frac{1}{2} (ATT_{self}(V_{i}^{l-1}, V_{e}^{l-1}, V_{e}^{l-1}) + ATT_{enc}(V_{i}^{l-1}, V_{b}, V_{b}))$$
(1)

接着,前馈神经网络 (FFN) 对 V_i 进行处理,得到第 l 层的输出 V_i , 编码器每一层迭代之后从最后一层输出 V_a .

令 T_{ct}^{l} 表示解码器第l层前t个时间步的隐藏表示, T_{t}^{l} 表示l层在第t个时间步的隐藏表示。则:

$$T_{t}^{l1} = ATT_{self}(T_{t}^{l-1}, T_{< t+1}^{l-1}, T_{< t+1}^{l-1})$$
 (2)

$$T_t^{l2} = \frac{1}{2} (ATT_{dec}(T_t^{l1}, V_b, V_b) + ATT_{enc-dec}(T_t^{l1}, V_e^L, V_e^L))$$
 (3)

$$T_t^l = FFN(T_t^{l_2}) \tag{4}$$

式中: ATT_{dec} 、 $ATT_{enc-dec}$ 分别表示解码器注意力机制和编码器 -解码器注意力机制。可以在多次迭代后得到 T_t^L ,然后通过线性变换和 softmax 函数对第 t 个词进行预测。将所有预测得到的单词组合起来,可以获得最终的输出序列。

1.2 流利度促进推理

在流利度促进推理阶段采用流利度提升策略,对存在多个语法错误的语句,该算法可以先对其中的一些错误进行修正,修正后的语句可以使得上下文更加清楚,从而帮助模型修正其它错误。如图 3 所示,流利度提升策略可以使模型通过多轮编辑对错误句子进行修改。通常纠错模型将源语句作为模型输入,第一轮推理结果(Round₁)作为模型输出。然而,流利度提升策略并不会将其作为最终预测结果,它会对Round₁ 进行打分,分数越高,说明句子流利度越高。如果句子流利度得到提升,流利度提升策略将以 Round₁ 作为模型输入,生成下一轮推理结果 Round₂。推理过程将持续进行,直到句子流利度不再提升为止。

图 3 流利度促进推理阶段

2 实验设置

本研究中使用 NLPCC2018 GEC 共享任务 ^[8] 提供的中文 GEC 数据集,整个数据集包含 1 157 708 个中文句子对和 2000 个标记测试语句。去除数据集中文本长度大于64 以及源语句和目标语句完全相同的部分句子对,获得1 025 550 个句子对。最后,从中随机选取 5000 个句子对作为验证集,剩余 1 020 550 个句子对为训练集,2000 条标记语句作为测试集。

训练过程中的模型参数设置如下:对于融合策略,选择 Adam 优化器训练模型,最大令牌为 4096,损失函数使用标签平滑交叉熵,dropout 概率为 0.3,设置初始学习率为 3×10^{-5} ,并采用线性衰减的学习率衰减方法。对于初始化策略,学习率设置为 5×10^{-4} ,采用 Adam 优化器训练模型,批次大小为 32,设置 dropout 概率为 0.1,损失函数采用 cross entry。

评估工具选择 MaxMatch(M_2)工具包。 M_2 方法 ^[9] 是一种广泛应用于 GEC 任务的评价工具,可以计算系统假设与标准纠正之间的匹配程度。首先, M_2 计分器计算源语句与系统假设之间可能的编辑序列,并找到与标准纠正集 g_i 重叠度最高的编辑序列 e_i ,然后依据最优序列计算精确率(P)、召回率(R)和 $F_{0.5}$,计算公式为:

$$P = \frac{\sum_{i=1}^{n} |e_i \cap g_i|}{\sum_{i=1}^{n} |e_i|}$$
 (5)

$$R = \frac{\sum_{i=1}^{n} |e_i \cap g_i|}{\sum_{i=1}^{n} |g_i|}$$
 (6)

$$F_{0.5} = 5 \times \frac{P \times R}{P + 4 \times R} \tag{7}$$

3 结果及分析

实验结果如表 1 所示。实验 9 为 Transformer 模型,BERT-fuse 和 BERT-init 模型结果相较于实验 9 均有所提升,说明 BERT 中已有的语义知识有利于提高中文语法纠错性能。采用 BERT-fuse 和 BERT-init 作为基线模型。设置实验 3 和实验 4,通过融合和初始化策略将 MacBERT 预训练模型引入到纠错任务中,纠错性能均得到改善,验证了知识增强学习阶段的有效性,并且 GEC 模型可以更有效利用 MacBERT 中的知识。实验 5 和实验 6 为本文提出的 KFPGEC 模型,纠错性能相较于基线模型提升了 +2.14 和 +2.03,融合策略对纠错性能的影响大于初始化策略,最佳结果达到 31.88。此外,与实验 3 和实验 4 相比,结果进一步增加,表明流利度提升策略有利于 GEC 任务。

表1 不同改进对模型的影响

ID	Model	P/%	R/%	$F_{0.5}$ /%
1	BERT-fuse	31.90	23.40	29.74
2	BERT-init	31.81	22.41	29.35
3	MacBERT-fuse	36.56	20.34	31.53
4	MacBERT-init	32.79	24.59	30.74
5	KFPGEC-fuse	36.78	20.80	31.88
6	KFPGEC-init	33.21	25.71	31.38
7	数据扩充	38.63	24.82	34.76
8	模型集成	41.04	27.23	37.26
9	Transformer	36.57	14.27	27.86
10	YouDao	35.24	18.64	29.91
11	BERT-encoder	41.94	22.02	35.51
12	BN-CGECM	51.57	17.43	37.05

实验 7 采用基于规则和基于反向翻译的方法构造数据集,和 NLPCC2018 原始纠错数据共同用于 KFPGEC-fuse 模型的训练。实验 8 同时采用数据扩充及模型集成方法来提升 KFPGEC-fuse 模型纠错性能,实验结果最终达到 37.26。与前人研究进行比较,如实验 10 至实验 12。实验 10 为 NLPCC2018 中文语法纠错共享任务中有道团队 $^{[10]}$ 开发的性能最好的纠错系统。实验 11 将 BERT 预训练模型引入 Transformer 编码器中构建 BERT-encoder 模型,并基于该模型训练了一个 4-ensemble 模型。实验 12 构建 BART 噪声器 $^{[11]}$ 向输入语句中生成噪声,将其用于模型训练,并对模型进行集成。本文提出的集成模型相较于 NLPCC2018 中文语法纠错共享任务性能最好的模型, $F_{0.5}$ 值高出 7.35 个百分点。并且和实验 11 及实验 12 相比, $F_{0.5}$ 值分别提升了 1.75 和 0.21 个百分点,验证了本文工作的有效性。

表 2 各错误类型校正的 $F_{0.5}$ 值

Error Type	BERT-fuse	MacBERT-fuse	BERT-init	MacBERT-init
S	34.27	37.16	35.12	38.35
М	32.64	33.92	33.20	35.46
R	35.73	38.31	33.85	31.79
W	17.18	13.62	11.26	9.59

从测试结果中随机抽取 400 条句子对,分析模型在知识增强学习阶段对四种类型错误的纠正效果,实验结果如表 2 所示。模型对词序类型的错误纠正效果最差,并且 MacBERT 预训练模型的引入对该类错误没有帮助, $F_{0.5}$ 值明显降低。MacBERT 预训练模型可以提升模型对其他三种类型错误的

纠错性能, 其中对于选词类型纠错性能的提升最高。

为展示模型推理过程,对采用流利度提升策略后的推理过程进行分析,部分样本如表 3 所示,其中 Source 为源语句,Target 为目标语句,Round,为模型第 i 次推理后输出的语句。例如,在样本 1 中,经过两次推理预测,模型对包含多个错误的源语句进行逐步纠正。模型首先将"今大"改为"今天",使得模型流利度提升,更易于理解,促使模型在后续的推理中对其他位置的错误进行进一步的纠正。然而,流利度提升策略在某些情况下也会出现错误。例如,在样本 2 中,KFPGEC 在语句中添加了不必要的单词"里"。

表 3 纠错样本示例

样本编号	句子		
1	Source: 今大我跟我朋友去餐厅吃饭。 Target: 今天我跟朋友去餐厅吃饭。 Round 1: 今天我跟我朋友去餐厅吃饭。 Round 2: 今天我跟朋友去餐厅吃饭。		
2	Source: 我在公圆散步。 Target: 我在公园散步。 Round 1: 我在公园散步。 Round 2: 我在公园散步。		

4 结论

本文提出了基于 MacBERT 预训练模型和流利度提升策略的中文语法纠错模型 KFPGEC。在 NLPCC 2018 中文 GEC 共享任务数据集上进行大量实验验证,结果表明,MacBERT 预训练模型已有的知识信息和流利度提升策略可以有效改善 GEC 性能。此外,采用数据构造及集成方法进一步改善纠错 性能。结果分析表明,词序纠错仍有改进的空间,将在今后的工作中继续探索这一问题。

参考文献:

- [1]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30:6000-6010.
- [2]GE T, WEI F, ZHOU M.Fluency boost learning and inference for neural grammatical error correction[C]//56th Annual Meeting of the Association for Computational Linguistics: Long Papers,vol.2.Stroudsburg,PA:Association for Computational Linguistics,2018: 1055-1065.
- [3]WANG H, KUROSAWA M, KATSUMATA S, et al. Chinese grammatical correction using BERT-based pre-trained model[EB/OL].(2020-11-04)[2024-03-01].https://doi.

- org/10.48550/arXiv.2011.02093.
- [4]CUI Y, CHE W, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing[C]//Findings of ACL: EMNLP 2020, Part 1.Stroudsburg, PA: Association for Computational Linguistics, 2020: 657-668.
- [5]ZHU J, XIA Y, WU L, et al.Incorporating bert into neural machine translationd[EB/OL].(2020-02-17)[2024-03-01].https://doi.org/10.48550/arXiv.2002.06823.
- [6]LAMPLE G, CONNEAU A.Cross-lingual language model pretraining[EB/OL].(2009-01-22)[2024-03-01].https://doi. org/10.48550/arXiv.1901.07291.
- [7]ROTHE S, NARAYAN S, SEVERYN A.Leveraging pretrained checkpoints for sequence generation tasks[J].Transactions of the association for computational linguistics,2020, 8: 264-280.
- [8]ZHAO Y, JIANG N, SUN W, et al. Overview of the nlpcc 2018 shared task: Grammatical error correction[C]//Natural Language Processing and Chinese Computing, Part II. Berlin: Springer, 2018:439-445.
- [9]DAHLMEIER D, NG H T.Better evaluation for grammatical error correction[C]//2012 Conference of the North American Chapter of the Association for Computational Linguistics: human language technologies.Stroudsburg,PA:Association for Computational Linguistics,2012:568-572.
- [10]FU K, HUANG J, DUAN Y.Youdao 's winning solution to the nlpcc-2018 task 2 challenge: a neural machine translation approach to chinese grammatical error correction[C]//Natural Language Processing and Chinese Computing: 7th CCF International Conference.Cham:Springer,2018:341-350.
- [11] 孙邱杰,梁景贵,李思.基于 BART 噪声器的中文语法纠错模型 [J]. 计算机应用,2022,42(3):860-866.

【作者简介】

王岩(1994—),男,山西吕梁人,硕士,助教,研究方向: 自然语言处理、数字图像处理。

(收稿日期: 2024-03-12)