基于 AI 大模型的智能交通系统设计与应用研究

唐 维 ¹ 杨 超 ^{2*} 顾程琳 ³ TANG Wei YANG Chao GU Chenglin

摘 要

随着人工智能技术的快速发展,AI 大模型在交通领域的应用日益广泛。文章重点探讨 AI 大模型在智能交通系统中的核心技术架构、算法优化、业务应用等关键问题,深入分析大模型驱动的交通智能化解决方案。研究表明,基于 Transformer 架构的大模型在交通流预测、路径优化、事故分析等方面表现出显著优势,预测精度相比传统方法提升 15%~25%。通过构建多模态 AI 融合框架,实现了交通数据的智能处理和实时决策支持,为智慧城市建设提供了重要技术支撑。

关键词

AI 大模型;智能交通;深度学习;交通预测;智能控制

doi: 10.3969/j.issn.1672-9528.2025.08.026

0 引言

智能交通系统(intelligent transportation system, ITS)作为现代城市基础设施的重要组成部分,正面临着交通流量激增、城市拥堵加剧、环境污染严重等挑战。传统的交通管理方式已难以满足日益复杂的交通需求,迫切需要引入先进的人工智能技术来提升交通系统的智能化水平[1]。

- 1. 浪潮卓数大数据产业发展有限公司 山东济南 250101
- 2. 中晟软件股份有限公司 山东济南 250014
- 3. 山东省通信网络保障中心 山东济南 250000

1 AI 大模型驱动的交通系统技术架构

1.1 大模型支撑的交通云脑设计

交通云脑作为智能交通系统的核心中枢,承载着海量交通数据的处理、分析和决策任务。基于 AI 大模型的交通云脑采用多层次架构设计,从底层的数据接入到顶层的用户交互,形成了完整的智能化处理链条。数据接入层负责统一接收来自各类交通传感器、监控设备和第三方数据源的实时信息,通过标准化接口实现异构数据的统一管理^[2]。模型服务层是系统的核心,部署了针对不同交通场景优化的专用大模型,包括基于 Transformer 架构的交通预测大模型、融合图神

- [7] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//NIPS'14: Proceedings of the 28th International Conference on Neural Information Processing Systems.NewYork:ACM,2014:2672-2680.
- [8] RIGATTI S J. Random forest[J]. Journal of insurance medicine, 2017, 47(1): 31-39.
- [9] WENG L L. From GAN to WGAN[EB/OL].(2019-04-18)[2025-05-10].https://doi.org/10.48550/arXiv.1904.08994.
- [10] LOEY M, MANOGARAN G, KHALIFA N E M. A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images[J]. Neural computing and applications, 2020(26): 1-13.
- [11] FERNÁNDEZ A, GARCIA S, HERRERA F, et al. SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary[J]. Journal of artificial intelligence research, 2018, 61: 863-905.

- [12] HE H B, BAI Y, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]//2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). Piscataway: IEEE, 2008: 1322-1328.
- [13] MAJZOUB H A, ELGEDAWY I. AB-SMOTE: an affinitive borderline SMOTE approach for imbalanced data binary classification[J]. International journal of machine learning and computing, 2020, 10(1): 31-37.

【作者简介】

王娴(2001—),女,山西吕梁人,硕士研究生,研究方向: 机器学习。

崔彩霞(1974—),女,山西吕梁人,博士,副教授、硕士生导师,研究方向:机器学习、数据挖掘。

(收稿日期: 2025-03-05 修回日期: 2025-07-29)

经网络的路径规划大模型,以及整合多模态信息的事件检测 大模型。业务应用层将模型的推理结果转化为具体的交通管 理服务,如信号控制优化、拥堵预警、应急调度等。用户交 互层则为交通管理人员和公众用户提供直观的界面和丰富的 功能服务。

1.2 多模态 AI 模型调用框架

智能交通系统的核心挑战在于处理来自不同传感器的 多模态数据,这些数据包括视频监控画面、雷达检测信号、 GPS 轨迹数据、气象环境信息、社交媒体文本等多种形式。 多模态 AI 框架通过建立统一的数据处理标准和模型调用接 口,实现了异构数据的有效融合和协同处理。数据标准化模 块首先将来自不同源头、不同格式的原始数据转换为统一的 张量表示形式,确保各类数据能够在同一计算框架下进行处 理。特征融合模块是框架的核心组件,采用先进的注意力机 制和跨模态学习技术, 能够自动发现不同模态数据之间的关 联关系,实现深层次的信息融合。模型调度模块则根据具体 的业务需求和实时的系统负载情况,智能地分配计算资源, 动态调用最适合的 AI 模型组合,确保系统的高效运行和快 速响应。

1.3 多源数据融合 AI 算法

交通系统涉及多种数据源,包括交通流量、车辆轨迹、 道路状况、天气信息等。多源数据融合算法通过深度学习技 术,实现异构数据的有效整合。

数据融合算法采用分层架构设计,对各数据源进行特 征提取和标准化处理。交通流量数据通过时序卷积神经网络 (TCN) 提取时间特征, GPS 轨迹数据通过 GraphSAGE 算 法进行节点嵌入学习,气象数据通过多层感知机编码。

算法的核心创新在于自适应权重分配机制, 采用基于 Transformer 的跨模态注意力网络动态计算各数据源的重要性 权重。多源数据融合的数学模型表示为:

 $F_{\text{fustion}} = \sum_{i=1}^{n} \alpha_i(t) \cdot \Phi_i(X_i) + \beta \cdot \varphi(X_1, X_2, \dots, X_n)$ (1) 式中: $\alpha_i(t)$ 为时间感知的权重系数; $\Phi_i(X_i)$ 为第 i 个数据源的 特征提取函数; φ 为跨模态交互函数。

在智慧交通应用中,该公式实现了交通流量数据、GPS 轨迹、气象信息的智能融合。例如,在雨天场景下,系统 自动提高气象数据的权重 α_{weather} , 降低视觉传感器的权重 α_{uision} ,确保在能见度较低时仍能准确预测交通状况。该机制 通过学习不同模态间的相关性矩阵, 自动发现数据源间的互 补关系和冗余信息。在实际部署中,系统建立统一的数据接 入标准,采用 Apache Avro 序列化格式确保高效传输。时空 对齐模块通过卡尔曼滤波处理传感器噪声和缺失值。该算法 在某市交通管理系统中的应用表明, 多源数据融合相比单一 数据源,交通状态识别准确率提升了18.7%,在恶劣天气条 件下提升达到 22.3%。

1.4 AI 模型安全与隐私保护

智能交通系统在处理海量敏感个人出行数据时,数据安 全和隐私保护成为系统设计的核心要求。系统采用了多层次 的隐私保护技术架构,通过联邦学习、差分隐私等先进技术, 在确保用户隐私安全的前提下实现高效的模型训练和智能 应用。

在隐私保护机制的设计中,差分隐私技术作为基础保障, 通过在模型训练过程中添加经过精确计算的随机噪声, 有效 防止恶意攻击者从模型输出中推断出个人敏感信息, 从而在 统计层面保护用户隐私。联邦学习框架则实现了分布式协作 训练模式, 各参与方无需共享原始数据, 仅通过交换模型参 数和梯度信息完成协同学习, 既保护了数据本地化存储的安 全性,又实现了全局最优模型的构建。此外,系统还引入了 同态加密技术, 支持在数据完全加密状态下进行模型推理计 算,确保即使在数据传输和处理过程中,用户的隐私信息也 得到全方位保护。

2 基于 AI 大模型的交通预测与优化

2.1 深度学习交通流预测模型

交通流预测是智能交通系统的核心功能之一。基于 Transformer 架构的交通流预测模型能够有效捕捉交通数据的 长期依赖关系和复杂时空模式。模型采用改进的多头注意力 机制作为核心组件,通过查询、键、值矩阵的交互计算,能 够动态地关注历史时间序列中的重要信息。与传统的循环神 经网络不同, Transformer 能够并行处理整个时间序列, 大大 提高了训练和推理效率。系统特别引入了稀疏注意力机制, 通过局部窗口和跨步采样的方式,将注意力计算的复杂度从 $O(n^2)$ 降低到 $O(n \log n)$, 使得模型能够处理更长的时间序列。

交通流预测模型采用编码器-解码器架构,输入包括历 史一段时间内的多维交通数据。编码器部分使用 6 层 Transformer 块,每层包含多头自注意力和前馈神经网络,采用残 差连接和层归一化。为了捕捉交通流的多尺度周期性,系统 设计了分层时间嵌入机制,将时间信息分解为小时、星期、 月份等不同粒度,通过可学习的嵌入向量进行编码。模型创 新性地引入了交通语义增强模块,该模块通过预训练的交通 知识图谱,为每个路段添加语义标签(如商业区、住宅区、 学校周边等),这些语义信息通过图卷积网络进行编码,与 时序特征进行融合,显著提升了模型对不同区域交通模式的 理解能力。

在解码阶段,模型采用教师强制训练和自回归推理相结 合的策略。训练时使用真实的历史数据作为解码器输入,推 理时则基于已预测的结果进行自回归生成。为了缓解误差累 积问题,系统引入了计划采样技术,在训练过程中逐步增加 使用预测值的概率。

模型优化采用多任务学习框架, 损失函数设计为:

$$L_{\text{total}} = \sum_{k=1}^{K} \lambda_k \lambda_k + \gamma L_{\text{reg}}$$
 (2)

式中: L_k 为第 k 个任务的损失函数; λ_k 为任务权重; L_{reg} 为正 则化项。

在智慧交通系统中, 该多任务框架同时优化交通流量预 测(L_{flow})、速度预测(L_{speed})和密度预测(L_{density})任务。 通过共享底层特征表示,模型能够学习到更加鲁棒的交通模 式。例如, 当某路段出现异常拥堵时, 流量下降、速度降低、 密度增加,3个任务的联合优化使得模型能够更准确地捕捉 这种关联性,提高预测精度。优化器采用 AdamW,结合余 弦退火学习率调度和梯度裁剪技术,确保训练的稳定性和收 敛性。

在北京市二环路的实际应用中,该模型的15 min 交通 流预测准确率达到92.3%,相比传统ARIMA模型提升了 23.5%。特别值得一提的是,在交通高峰期和突发事件期间, 模型的预测性能依然保持稳定,这为交通管理部门的决策提 供了可靠的数据支撑。模型部署后,预测结果每3 min 更新 一次,能够为信号控制、路径规划等下游应用提供实时的交 通流信息。

2.2 AI 驱动的智能控制系统

智能信号控制系统基于深度强化学习算法,实时优化交 通信号配时方案。系统将交通路口建模为多智能体环境,每 个信号灯作为一个独立的智能体, 通过与环境的交互学习最 优的控制策略。系统的核心是基于深度强化学习的智能体网 络,采用 Actor-Critic 架构实现策略优化。Actor 网络负责生 成信号配时策略,采用3层全连接神经网络,使用ReLU激 活函数和 Batch Normalization 技术。Critic 网络评估状态价值, 采用双 Q 网络结构减少过估计偏差。为了处理连续的动作空 间,系统采用改进的 DDPG 算法,结合优先经验回放和噪声 网络技术,提高样本利用效率和探索能力。

状态空间设计包含多维交通特征: 车辆排队长度通过计 算机视觉技术实时检测,等待时间通过车辆轨迹跟踪算法计 算,车流密度通过雷达和地磁传感器融合获得。系统还引入 了历史状态嵌入,通过 LSTM 网络编码过去 10 个时间步的 状态信息,增强模型的时序建模能力。奖励函数采用分层设 计,数学表达式为:

$$R_t = R_{\mathrm{immediate}}(S_t, a_t) + \gamma \sum_{i=1}^H \delta^i R_{\mathrm{future}}(S_{t+i})$$
 (3)
式中: $R_{\mathrm{immediate}}$ 为即时奖励; R_{future} 为延迟奖励; γ 为折扣因子; δ 为衰减系数。

具体的奖励函数设计为:

$$R_{\text{immediate}} = -\alpha W_t - \beta Q_t - \eta E_t + \zeta T_t \tag{4}$$

式中:W,为平均等待时间;Q,为队列长度;E,为排放量;T, 为通行量。

在智慧交通信号控制中,该奖励函数实现了多目标优化。 当某路口出现拥堵时, W,和Q,增大导致负奖励增加,促使 智能体调整信号配时; 当通行量 T, 增加时, 正奖励鼓励高效 的信号方案。系统引入了自适应权重机制,通过元学习算法

动态调整 α 、 β 、 η 、 ζ 参数,使得奖励函数能够适应不同时段 和不同区域的交通特征。在多路口协同控制中,系统采用分 布式多智能体强化学习框架,结合图神经网络建模路口间的 拓扑关系。每个智能体维护局部策略网络,同时通过消息传 递机制与邻近智能体交换信息。系统引入了注意力机制,使 得每个智能体能够自适应地关注最相关的邻居信息, 避免信 息冗余和干扰。为了确保系统的安全性和稳定性,引入了约 束强化学习框架。通过拉格朗日乘数法将安全约束集成到优 化目标中,确保生成的信号配时方案满足最小绿灯时间、最 大周期长度等硬约束。系统还采用渐进式部署策略, 从仿真 环境到半实物仿真,再到真实环境的逐步验证,确保算法的 可靠性。该系统在上海市某交通走廊的试点应用中, 平均通 行时间减少了16.8%,燃油消耗降低了12.4%。更重要的是, 系统显著改善了交通流的稳定性,减少了走走停停的现象, 提升了驾驶体验。在节假日和特殊事件期间,系统能够快速 适应交通模式的变化,保持良好的控制效果。

2.3 基于 AI 的拥堵预警与疏导

拥堵预警系统结合历史数据挖掘和实时数据分析,构建 拥堵风险评估模型。模型采用多任务学习框架,同时预测拥 堵概率和拥堵持续时间,为交通管理部门提供全面的决策信 息。系统首先通过深度学习模型分析历史交通数据,拥堵预 测模型的核心算法为:

$$P(\text{congestion}_{t+\Delta t}) = \sigma(\mathbf{W}_c \cdot h_t + b_c)$$
 (5)

$$T(\text{duration}) = \max(0, \mathbf{W}_d \cdot h_t + b_d) \tag{6}$$

式中: h_t 为时刻 t 的融合特征表示; σ 为 sigmoid 函数; W_{c} W_a 为权重矩阵。

在智慧交通拥堵预警系统中,式(5)预测未来 Δt 时间 内发生拥堵的概率, 当P > 0.7 时系统发出预警; 式(6) 预 测拥堵持续时间,帮助用户合理安排出行计划。通过对比分 析正常交通状态和拥堵状态下的特征差异,模型学会了提取 拥堵的关键指标。这些指标包括交通流量的突然增加、车辆 平均速度的显著下降、道路占有率的持续上升等。

拥堵概率预测模块采用深度神经网络架构, 融合多源实 时数据进行概率估算。模型不仅考虑当前的交通状况,还会 分析天气条件、时间因素、历史模式等外部影响因素。通过 sigmoid 激活函数将输出映射到 0~1 区间,表示拥堵发生的 概率。拥堵持续时间预测模块采用回归网络结构,基于当前 交通状态和历史拥堵恢复模式,估算拥堵可能的持续时长。 这种预测有助于用户和管理部门合理安排出行计划和应对措 施。疏导策略模块基于动态路径规划算法,最优路径计算公 式为:

$$R = \arg\min_{R \in \mathbb{R}} \sum_{e \in \mathbb{R}} w_e(t) \cdot c_e(t)$$
 (7)

式中: R 为所有可行路径集合; $w_{e}(t)$ 为道路段 e 在时刻 t 的 动态权重; $c_s(t)$ 为通行成本。

动态权重计算公式为:

$$w_e(t) = \alpha \frac{T_e(t)}{T_f^{\text{free}}} + \beta \frac{D_e(t)}{D_e^{\text{max}}} + \gamma S_e(t)$$
 (8)

式中: $T_e(t)$ 为实际通行时间; T_e^{free} 为自由流通行时间; $D_e(t)$ 为当前密度; $S_e(t)$ 为安全系数。

在智慧交通疏导系统中,该算法实现了实时最优路径计算。当某路段发生拥堵时, $T_e(t)$ 增大导致权重 $w_e(t)$ 增加,系统自动为用户推荐绕行路线。例如,当主干道拥堵时,算法会计算经过次干道的替代路径,确保总通行时间最短。系统会自动计算替代路径,并通过多种渠道向公众发布绕行建议。

系统还具备智能疏导功能,能够根据拥堵的规模和位置,制定个性化的疏导方案。对于小规模拥堵,系统主要通过优化信号配时进行缓解;对于大规模拥堵,系统会启动区域性的交通管制措施,包括临时调整车道设置、实施分流措施等。

在实际应用中,系统与导航软件、交通广播、可变信息 板等信息发布渠道深度集成,确保疏导信息能够及时传达给 道路使用者。通过实时反馈机制,系统还能够评估疏导措施 的效果,并动态调整策略。

2.4 强化学习路径规划模型

个性化路径规划系统采用深度强化学习算法,考虑用户偏好、实时路况、历史行为等因素,为用户推荐最优出行路径。该系统超越了传统的最短路径算法,能够在复杂的城市交通环境中找到真正最优的出行方案。

系统的状态空间设计充分考虑了影响路径选择的各种因素,包括当前位置、目的地、出行时间、实时交通状况、天气条件以及用户的个人偏好等。这种多维度的状态使得系统能够全面理解当前的出行环境,为决策提供充分的信息基础。

动作空间定义为每个路口可选择的道路段集合,智能体在每个决策点都需要选择下一步的行进方向。与传统的离线路径规划不同,强化学习方法支持在线决策,能够根据实时变化的交通状况动态调整路径。

系统采用时间差分学习方法更新价值函数,通过与环境的持续交互不断优化路径选择策略。价值函数学习的目标是估计从某个状态开始,采用当前策略能够获得的长期累积奖励。这种设计使得系统不仅考虑即时的通行效率,还会考虑长期的出行体验。

为了处理用户偏好的多样性,系统建立了个性化的用户 画像模型。通过分析用户的历史出行数据,系统能够学习到 不同用户的偏好特征,如对时间效率的重视程度、对路径熟 悉度的偏好、对高速公路的使用倾向等。这些个性化特征被 编码到状态表示中,影响路径推荐的结果。

系统还集成了实时交通信息,包括拥堵状况、事故信息、 道路施工等动态因素。通过与交通管理部门的数据共享,系 统能够获得最新的交通状态信息,确保路径推荐的时效性和 准确性。

在奖励函数设计上,系统综合考虑了出行时间、行程费

用、路径安全性、用户舒适度等多个维度。不同的用户可以 设置不同的偏好权重,系统会据此调整优化目标,提供个性 化的路径方案。

该算法在滴滴出行平台的测试显示,相比传统最短路径算法,用户出行时间平均缩短了14.2%。更重要的是,系统推荐的路径更符合用户的实际偏好,用户满意度显著提升。在复杂的交通环境下,如恶劣天气、重大活动期间,系统表现出更强的适应性和鲁棒性。

3 结论

本文系统分析了 AI 大模型在智能交通系统中的设计理念、技术架构和应用实践。研究表明,AI 大模型凭借其强大的特征学习能力和泛化性能,在交通预测、智能控制、事故分析等方面展现出显著优势。通过构建多层次的技术架构和多模态融合框架,实现了交通数据的智能处理和实时决策支持。在实际应用中,基于 Transformer 的交通流预测模型预测精度相比传统方法提升 15%~25%;强化学习信号控制系统使平均通行时间减少 16.8%;计算机视觉违法识别系统准确率达到 96.7%。这些成果为智慧城市建设提供了重要技术支撑。

然而,AI 大模型在交通领域的应用仍面临一些挑战,包括模型可解释性不足、计算资源需求巨大、数据隐私保护等问题。未来需要在提升模型性能的同时,加强可解释性研究、优化计算效率、完善隐私保护机制。随着技术的不断发展,AI 大模型将在智能交通系统中发挥越来越重要的作用,推动交通行业向更加智能化、高效化、绿色化的方向发展,为构建智慧城市和可持续交通体系提供强有力的技术保障。

参考文献:

- [1] 刘曙生,李霞,严凯,等.基于和声算法和ABC算法的绿色智慧交通运行调整控制方法研究[J].自动化与仪器仪表,2025(5):63-67.
- [2] 杨建,李国兴,黄小琼,等.智能反射界面辅助的智慧交通可见光通信系统[J]. 汽车技术,2025(5):1-10.

【作者简介】

唐维(1991—), 男, 山东济南人, 本科, 研究方向: 电子信息。

杨 超 (1989—) , 通 信 作 者 (email:bingorchao@163. com) , 男, 山东济南人, 本科, 研究方向: 电子信息。

顾程琳(1984—), 女, 山东烟台人, 本科, 研究方向: 通信工程。

(收稿日期: 2025-06-04 修回日期: 2025-08-12)