基于 ZYNQ 的图像去雾算法研究

王毅鹏¹ 雷千龙¹ WANG Yipeng LEI Qianlong

摘 要

智能化时代,随着各行业对视觉信息精准度要求的不断提升,图像去雾处理算法被广泛应用于安防监控、辅助驾驶以及无人机航拍等重要领域,有力推动各产业智能化发展进程。然而面对需要高实时性的图像处理的场景需求,基于PC端的图像去雾算法拥有计算复杂、实时性与便携性差等缺点使得其难以满足实际应用。针对这一问题,文章提出了一种基于MSR理论的轻量化图像处理算法,并将其移植至ZYNQ硬件平台。通过PS端控制系统各硬件功能模块,PL端强大的流水线与并行计算能力完成算法加速实现。经过测试,该系统不仅拥有出色的图像去雾能力,较高的图像重构准确度与更小的失真,还具备高便携性、高实时性、低功耗的优点,能够满足航拍等这类对实时性要求较高的实际应用场景需求。

关键词

图像去雾; ZYNQ; MSR; 硬件加速

doi: 10.3969/j.issn.1672-9528.2025.01.029

0 引言

雾霾天气下由于光线的传播受大气漂浮粒子反射影响,产生的低能见度导致户外成像设备采集到的图像成像质量差且模糊不清,丢失大量关键信息,影响设备的正常运行^[1]。以道路交通安全为例,道路监控设备较差的成像质量会使得交警难以识别车辆或行人的违章情况,严重时还可导致群众生命财产的损失。因此具有高实时性的图像去雾处理系统研究显得尤为重要^[2]。

现阶段图像去雾处理算法主要分为三类,分别为基于深度学习的去雾算法^[3]、基于图像增强的去雾算法^[4]和基于物理模型的去雾算法^[5]。而高实时性的图像去雾系统不仅需要硬件平台具备强大的计算能力,还要求算法自身具有高效性与低复杂性,因此本文选择基于图像增强的去雾方法,在MSR 理论^[6]的基础上提出了利用小波变换代替高斯滤波成为环绕函数,并分别采用引导滤波和阈值去噪对不同尺度的分量进行处理,利用小波域的信息融合策略代替 MSR 理论中的线性加权策略实现图像的去雾处理。改进后的算法能够应用于 ZYNQ 硬件平台,通过软硬件结合的方式来实现图像去雾设备的高实时性与低功耗、小型化的要求。

1 图像去雾算法设计

1.1 MSR 算法理论

MSR 算法是单尺度 Retinex 算法的改进型。Retinex 图像增强算法由于其单一的参数使得该算法处理后的图像高频部

1. 西安工程大学电子信息学院 陕西西安 710600

分容易出现失真,进而丢失细节信息^[7]。Retinex 算法模型公式为:

$$S(x, y) = R(x, y)L(x, y)$$
(1)

由式(1)可知该算法是将图像视为反射光和入射光相互作用的结果,而反射信息决定了物体自身的属性。因此,可通过求取反射率与光照分量进而获得反射图像来实现去雾效果。其中 S(x,y) 表示有雾图像,R(x,y) 和 L(x,y) 分别代表反射分量和入射分量。取对数运算后公式为:

$$\log[S(x,y)] = \log[R(x,y)] + \log[L(x,y)] \tag{2}$$

对该式化简后公式为:

$$r(x, y) = s(x, y) - l(x, y)$$
 (3)

将 r(x,y) 求得指数函数后即可得到反射图像 R(x,y)。为了解决单尺度 Retinex 算法使得图像高频部分失真且丢失细节信息的缺点,MSR 算法在此基础上引入高斯环绕函数并加入多尺度参数,通过对多参数的加权运算使得图像拥有更小的失真和更好的重构准确度 [8],该算法公式为:

$$R_{MSR} = \sum_{n=1}^{N} w_n R_{ni}$$

$$= \sum_{n=1}^{N} w_n [\log I_i(x, y)] - \log(G_n(x, y) \otimes I_i(x, y))]$$
(4)

式中: $G_n(x, y)$ 为高斯环绕函数; W 为权重; I 为输入图像; R_{MSR} 表示算法处理后输出的去雾图像。

1.2 MSR 算法改进

在 MSR 算法中以高斯函数作为环绕函数虽然能够有效抑制噪声,保持图像的细节信息,但高斯环绕函数未充分考

虑到中心点与其邻域内像素点的灰度值关系,仅仅考虑到二 者的位置关系, 因此使得算法输出的图像容易产生光晕和边 缘模糊的现象^[9]。针对这一缺点,本文提出改进算法,采用 小波变换的多尺度分解来代替高斯环绕函数,将有雾图像分 解为高频分量和低频分量,利用公式(5)(6)所示的二维 离散小波变换实现。

$$W_{\varphi}(j_0, m, n) = \frac{1}{\sqrt{MN}} \sum_{n=0}^{M-1} \sum_{n=0}^{N-1} f(x, y) \varphi_{j_0, m, n}(x, y)$$
 (5)

$$W_{\phi}^{i}(j,m,n) = \frac{1}{\sqrt{MN}} \sum_{0}^{M-1} \sum_{0}^{N-1} f(x,y) \phi^{i}_{j,m,n}(x,y)$$
 (6)

其中,式(5)为计算图像的低频分量,该分量主要包 含图像中的平滑区域,能反应出图像的主要特征,代表了 该图像的全局信息;式(6)为计算图像中的高频分量,该 分量主要反应图像的局部信息,包含图像的噪声部分和细 节信息。

针对图像的低频部分,由于该部分主要反应图像的全局 特征, 因此本文选择采用引导滤波处理图像的低频分量, 其 基本原理公式为:

$$q_i = a_k I_i + b_k, \forall i \in W_k \tag{7}$$

$$q_i = p_i - n_i \tag{8}$$

式中: p 为输入图像; I 为引导图像; q 为输出图像。为了使 实际拟合函数与输入图像 p 之间的差距最小, 得出线性函数 的系数,公式为:

$$E(a_k, b_k) = \sum_{i \in wk} ((a_k I_i + b_k - p_i)^2 + \varepsilon a_k^2)$$
(9)

最终通过最小二乘法可得公式为:

$$a_{k} = \frac{\frac{1}{|w|} \sum_{i \in wk} I_{i} p_{i} - \mu_{k} \bar{p}_{k}}{\sigma^{2} + \varepsilon}$$

$$(10)$$

$$b_k = \bar{p}_k - a_k \mu_k \tag{11}$$

综上所述, 相比于高斯环绕函数, 通过引导滤波来处理 图像的低频分量不仅能够保护图像的细节信息, 避免丢失细 节,还能保证图像边缘的清晰度。并且由于引导滤波基于局 部线性模型的特点, 其还可自适应地根据像素特性调整滤波 器的响应。

对于高频分量,其中主要包含图像的纹理、边缘等细 节信息,反应了图像的局部特征,但也包含了较多的噪声[10], 因此需要通过去除噪声以提高图像质量,实现较好去雾效 果。针对高频分量的去噪,较为常用的便是全局阈值去噪法。 但在该方法中,由于硬阈值去噪容易造成重构图像的振铃现 象,考虑到对图像重构的准确度以及将算法移植至 ZYNQ 硬件平台时的计算复杂度,因此本文选择了软阈值去噪法, 其公式为:

$$\overline{w}_{j,k} = \begin{cases} \operatorname{sgn}(w_{j,k}) \cdot (|w_{j,k} - \lambda|), |w_{j,k} > \lambda| & (12) \\ 0, |w_{j,k} \le \lambda| & \end{cases}$$

$$\lambda = \sigma \sqrt{2\log P} \tag{13}$$

式中: λ 为所设置的阈值;P为输入图像的大小; σ 为噪声 方差。软阈值去噪函数不仅可以有效避免振铃现象的产生, 还拥有较好去噪效果和较低计算复杂度,适合移植到硬件平 台实现。

1.3 图像重构

本文通过改进 MSR 算法,利用小波变换的多尺度分解 代替 MSR 算法中的高斯环绕函数,对分解的低频分量采用 引导滤波,在保护图像细节信息与边缘清晰度的同时实现图 像增强。对高频分量采用软阈值去噪法抑制噪声。将处理后 的高频分量与低频分量利用小波域的信息融合策略取代原本 高斯环绕函数的线性加权策略,具体公式为:

$$f(x,y) = \frac{1}{\sqrt{MN}} \sum_{m} \sum_{n} W_{\varphi}(j_{0}, m, n) \varphi_{j_{0,m,n}}(x, y) + \frac{1}{\sqrt{MN}} \sum_{l=1}^{3} \sum_{j=j_{0}}^{\infty} \sum_{m} \sum_{n} W_{\psi}^{l}(j_{0}, m, n) \psi_{j,m,n}^{l}(x, y)$$
(14)

然而在小波变换与小波融合的过程中, 为了使图像拥有 更好的融合效果, 选择合适的基函数起到了至关重要的作用。 几种常用的小波基函数的性能指标如表 1 所示。

表 1 各小波基函数参数表

基函数	均值	标准差	熵	平均梯度
Harr	82.109 1	47.213 5	7.301 8	6.517 5
Daubechies	82.356 0	47.511 7	7.419 3	6.719 4
Coiflts	82.297 1	47.424 0	7.408 9	6.802 5

由表 1 可知 Daubechies 基函数 [11] 的融合图像虽然 平均梯度值略低,但其在均值等参数部分均优于其余基

函数, 因此本 文选择了拥有 更好综合性能的 Daubechies 基 函 数。为了使得生 成图像更符合人 眼的感知效果, 因此融合后的图 像还需经过1次 伽马矫正来令其 具有更接近真实 场景的视觉效果。

综上所述,整 个算法的运行流程 图如图1所示。

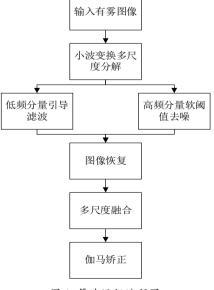
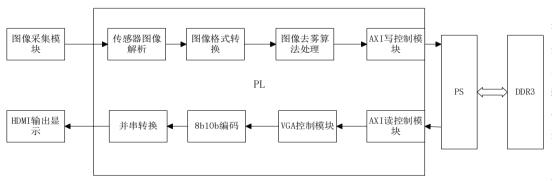


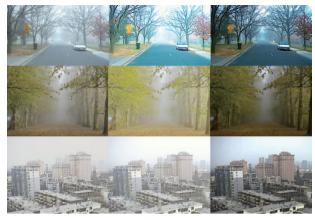
图 1 算法运行流程图

2 基于 ZYNO 的硬件平台系统设计

本文所使用的硬件平台为 ZYNQ7020, 该平台同时集成 了 ARM 处理器和 FPGA 的可编程逻辑门阵列。其内部架构 分为控制外设与内存访问,提供系统管理的 PS 端和多任务 并行处理,实现图像处理算法及硬件加速的 PL 端 [12]。整个 系统共分为5个功能模块,分别为图像信号采集模块、AXI 信号传输模块、算法处理模块、DDR3 存储模块以及 HDMI 图像输出模块。

系统的运行流程如图 2 所示,数据输入端信号采集模 块将采集到的图像输入 ZYNO 硬件平台, PL 端对输入图像 进行解析并将格式转换为 RGB, 后将其输入至算法处理模 块实现改讲 MSR 的图像夫雾处理。算法处理后的图像数据 流会存入一个写位宽为 32 位、深度为 2048 的 FIFO 中, 当 数据计数器大于 256 时, AXI 写控制模块会启动读时序读 取 FIFO 中的数据并将其写入 PS 端控制的 DDR3 存储模块。 数据输出端在从 DDR3 中读取的数据会存入 FIFO 中, 当计 数器大于 256 时, AXI 读模块启动读时序读取 FIFO 中的数 据并将其送入VGA控制器,将数据流重新转换为RGB格式。 由于 RGB 每个通道的数据位宽均为 8 位,因此为了保证数 据传输过程中的直流平衡,会将 VGA 控制器的输出数据进 行8b10b编码。最后将并行数据转换为串行数据后由HDMI 接口输出至显示器。




图 2 系统运行框图

在该系统中, ZYNO 的 PS 端使用 SPI 协议驱动图像采 集模块, AXI 的读写数据流为 AXI-Stream 格式, PS 端与 PL 端通过 AXI-Lite 协议进行交互。

3 实验结果分析

3.1 图像去雾算法仿真

为了验证本文提出的 MSR 改进算法的实际去雾效果, 取 3 张有雾图像经算法仿真输出后进行主观评价,利用肉眼 来判断输出图像质量,观察图像去雾效果并判断是否丢失细 节信息。将本文算法与传统的 MSR 算法输出图像进行仿真 对比如图 3 所示。

(a) 原图

(b) MSR 算法

(c) 本文算法

图 3 算法仿真输出结果对比

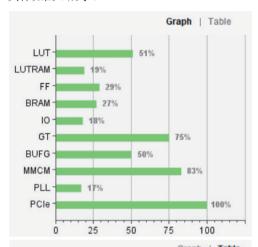
由图 3 可知, MSR 算法虽然能够在一定程度上去除图像 中雾霾噪声的干扰,但其还原图像中的边缘较为模糊,细节 信息没有得到体现,并且相比于原图,其去雾效果不够明显, 整体色调偏白亮,视觉感知效果不佳。而本文算法明显改善 了图像边缘模糊和细节丢失的问题,整体色调适中,内容清 晰,且图像重构准确度高,实现了良好的去雾效果。

3.2 图像去雾客观评价

为了从客观上评价本文算法的输出图像质量和去雾效 果,在此引入了结构相似性算法(SSIM)和峰值信噪比算法

> (PSNR),这两种算 示。

法分别从客观上用参 数来分析图像重构失 真情况、准确度以及 输出图像与无失真图 像的差距。将本文算 法和传统 MSR 算法对 比,输出图像的客观 评价参数表由表2所


表 2 输出图像客观参数评价表

图像	PSNR/dB		SSIM/%	
编号	MSR 算法	本文算法	MSR 算法	本文算法
1	14.726	17.913	73.750	82.967
2	14.519	17.825	73.826	81.281
3	14.677	17.839	73.802	82.467

由表 2 可知,相比于 MSR 算法本文算法输出图像拥有 更大的 SSIM 与 PSNR 值,即客观地表明了本文改进的 MSR 算法在图像重构准确度、噪声抑制以及控制重构图像失真度 上拥有更出色的表现。

3.3 硬件平台系统测试

本文将改进 MSR 算法移植至 ZYNQ 硬件平台,板卡型号为 ZYNQ-7020,该板卡上集成了 HDMI 口,以太网口以及 USB 口等资源。在系统中 PS 端 ARM 核心主频率为767 MHz,PL 端 FPGA 的主频为 250 MHz。信号采集模块使用 OV5640,采集到图像的分辨率为 12 807 px×720 px。软件平台算法上位机仿真工具为 Matlab,硬件开发平台为Vivado。将算法移植至硬件平台后,可得到其硬件资源占用情况,具体如图 4 所示。

Resource	Utilization	Available	Utilization
LUT	24012	47200	50.87
LUTRAM	3526	19000	18.56
FF	27687	94400	29.33
BRAM	28.50	105	27.14
Ю	51	285	17.89
GT	3	4	75.00
BUFG	16	32	50.00
MMCM	5	6	83.33
PLL	1	6	16.67
PCIe	1	1	100.00

图 4 系统硬件资源占用图

由图 4 可知,该系统中虽然 LUT 查找表占用资源较多,但 RAM 与 IO 资源占用较少,整体资源占用合理。且经测试系统对平均单幅图像处理平均耗时小于 40 ms,符合对图像处理系统高实时性、高便携性、高处理精度的要求。

4 结语

本文以 MSR 图像处理算法为理论基础,提出了改进算法即用小波变换多尺度分解代替原本的高斯环绕函数,并对图像分解的高频分量与低频分量进行不同程度的处理,最后优化了图像融合策略。这样既保护了图像的细节信息,解决了边缘模糊的问题,又使得算法拥有出色的去雾效果。将算

法移植至 ZYNQ 硬件平台后,通过测试表明算法拥有较高的可移植性与实时性,满足了实际应用场景对图像处理系统的要求。

参考文献:

- [1] 张海斌. 基于zynq实时视频图像去雾系统的设计[D]. 上海: 上海师范大学,2018.
- [2] 樊英. 雾霾天气下车牌检测与识别算法研究 [D]. 西安: 西安科技大学,2020.
- [3] LIAO Y H, SU Z, LIANG X G, et al. HDP-Net: haze density prediction network for nighttime dehazing[C]//Advances in Multimedia Information Processing - PCM 2018,Part I. Berlin: Springer, 2018: 469-480.
- [4] 张雨晴, 田小平, 邹长宽, 等. 图像能见度检测方法研究综述 [J]. 电子测量技术, 2023, 46(4):41-47.
- [5] ZHANG J C, SHAO J B, CHEN J L, et al. PFNet: an unsupervised deep network for polarization image fusion[J]. Optics letters, 2020, 45(6):1507-1510.
- [6] JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE transactions on image processing, 1997, 6(7): 965-976.
- [7]李博文,刘进锋.图像去雾技术研究综述[J].现代计算机(专业版),2022,28(13):57-61.
- [8] 李喆, 杨明, 成丽波,等. 基于图像分解和小波变换的单幅 图像去雨算法[J]. 系统科学与数学,2023,43(10):2680-2692.
- [9] 周筱雨,张栩豪,陈年,等.图像增强算法综合对比评估[J]. 自动化应用,2023,64(20):154-159.
- [10] 张珂,廖育荣,罗亚伦,等.基于改进同态滤波的红外图像增强算法[J].激光与光电子学进展,2023,60(10):53-59.
- [11] 张旭俊, 张宇. Daubechies 小波系数新解法 [J]. 电测与仪表, 2022, 59 (12): 89-95.
- [12] 王磊,孟志敏,刘帅,等.小波图像融合与目标识别的 嵌入式系统实现方法 [J]. 弹箭与制导学报,2021,41 (5): 12-18.

【作者简介】

王毅鹏(2000—), 男, 陕西安康人, 硕士研究生, 研究方向: 图像处理算法。

(收稿日期: 2024-10-08)