一种非接触式 FPGA 配置 Flash 快速烧写方法

王 博 张瑜莹 高 鹏 李飞飞 WANG Bo ZHANG Yuying GAO Peng LI Feifei

摘要

文章使用 Xilinx 公司 Artix-7 XC7A100T FPGA 与 Micro 公司 28F00AP30T BPI 配置 Flash 构成 FPGA 配置逻辑,并由 2 片 ESP8266 通讯芯片构建上位机与 FPGA 间的双向无线通信链路,共同组建 Flash 快速烧写实验平台。通过对 Flash 编程特性和无线通讯芯片工作方式的研究,编写基于 FPGA 的 Flash 快速烧写逻辑,设计了一种使用 Wi-Fi 传输的基于 FPGA 的非接触式配置 Flash 快速烧写方法,实现了非接触式更新 FPGA 配置 Flash 中的加载文件,为精简外部接口、提升产品气密性设计提供了一种可借鉴的思路。通过在 Flash 快速烧写实验平台中的验证,文章介绍的非接触式 Flash 快速烧写方法可以高效可靠的完成存储器件中 FPGA 配置文件的更新。

关键词

FPGA; 配置 Flash; 非接触式; 快速烧写

doi: 10.3969/j.issn.1672-9528.2025.03.016

0 引言

随着航空、航天、通信等领域对计算性能和应用灵活性要求的不断提高,FPGA(field-programable gate array)作为一种非传统、可定制的高性能并行计算器件获得了越来越广泛的关注与应用^[1-5]。其中,FPGA 作为易失型计算芯片需要片外存储器件的配合,通常使用 Flash 来存储 FPGA 的配置信息^[6],而如何灵活、高效且快速的更新 Flash 芯片中的内容成为一项关键的课题。

如图 1 所示,传统的使用 iMPACT 或 Vivado 等 FPGA 厂商的开发软件通过 JTAG 端口进行烧写的方式,需要用到上位机、专用烧写软件、FPGA 仿真器和线缆等多种设备和软件 [7-8]。

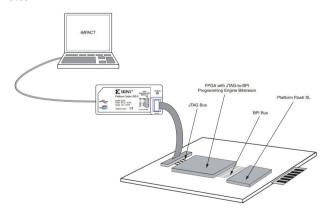


图 1 传统基于 JTAG 端口的 FPGA 编程方式

在开发阶段,该方式因为进行在线调试具有一定的便利性,可以使用成熟的软件和工具快速完成开发任务^[9]。

但这一方式也有不足之处,除需要多种设备和软件配合外,还需要在产品表面添加 6 针 /8 针 JTAG 端口,增加了产品引出到外部的端口,不利于产品的气密性设计。当 FPGA 逻辑经过充分验证且功能较为固定后,带有 FPGA 的 PCB 板被装入到产品内,通常还会加上外置罩,使整个产品处于密闭状态。在之后的版本批量升级过程中,如果使用传统 JTAG 端口的方式去烧写 FPGA 的配置 Flash 需要使用的资源开销较大且不够灵活。

本文采用一种基于 Wi-Fi 传输的非接触式 FPGA 配置 Flash 快速烧写方法,可以在产品表面外无实体连接的方式下快速更新 Flash 中存储的配置文件,实现不脱去产品罩子即可快速更新 FPGA 配置加载文件。

1 实验平台设计

如图 2 所示,通过详细研究 Micro 公司 28F00AP30T BPI 配置 Flash 芯片,编写该型 Flash 的 FPGA 烧写校验逻辑,充分利用 Flash 芯片内的 512 字(一字为 16 bit)写缓冲器来进行快速烧写,相比传统字编程的烧写方式大大加速了 Flash 的烧写速率,节省了编程时间。另外,通过建立无线传输数据通道,形成了完整的 FPGA 配置数据下发、校验和烧写完整工作流程。烧写软件的编程基于 XILINX公司 XC7ASX100T 器件,开发软件使用 Vivado 2016.2 版

^{1.} 中国空空导弹研究院 河南洛阳 471009

^{2.} 中国人民解放军 93160 部队 北京 100071

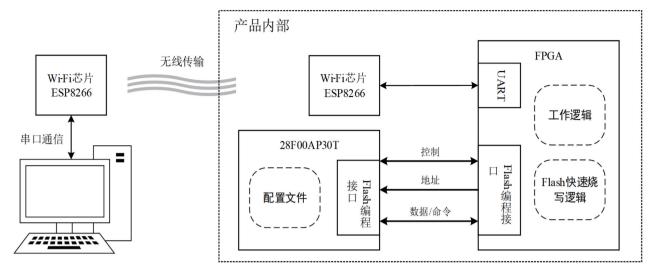


图 2 非接触式 FPGA 配置 Flash 快速烧写方法原理框图

本,编程语言为 Verilog,整个执行流程在某原理验证用的信号处理 PCB 板上进行了功能测试。

2 无线传输方式介绍

在上位机端(近端)和 FPGA 端(远端)分别使用一片 ESP8266 芯片来构建 Wi-Fi 传输通道,两片 ESP8266 芯片提前经过编程,上电后会自动互相搜索网络并建立连接。近端通过上位机串口与 ESP8266 芯片相连接,串口通信速率115 200 bit/s,芯片将串口接收到的数据和命令转化为 Wi-Fi 信号向远端发送,同时接收远端的信息反馈。

远端 ESP8266 芯片通过 Wi-Fi 信号接收到相应的命令和数据,通过双向 UART 端口与本地的 FPGA 建立连接并进行通信。FPGA 根据接收的命令和数据执行相应的操作,完成Flash 的擦除、烧写和回读校验等更新操作。

3 Flash 快速烧写

Flash 本身不具有自我更新能力,需要由外部连接的FPGA 器件按照 Flash 器件手册的编程要求对其进行更新。Flash 更新逻辑主要包括 5 大部分,分别为: 烧写前准备、数据擦除、内容下发与校验、烧写与回读校验、器件锁定。

3.1 烧写前准备

如图 3 所示,FPGA 上电后自动加载带有 Flash 快速烧写逻辑的配置文件,Flash 快速烧写逻辑中的执行状态机对配置 Flash 进行状态校验、配置寄存器重写、模式设定等操作。另外,Flash 上电后默认为锁定状态,执行写操作前,需要对 Flash 的所有分区进行解锁操作,等所有分区的解锁操作完成后进入 Flash 擦除流程。

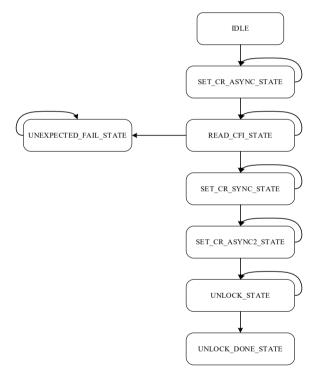


图 3 Flash 烧写前准备工作流程

3.2 数据擦除

如图 4 所示,Flash 的擦除需要进行等待和校验,擦除命令从 FPGA 发送给 Flash 后,会进行轮询操作,以确定当前 Flash 的状态。通过定时查询 Flash 的状态寄存器,执行逻辑会判断是否当前分区的擦除操作完成,如果没有则继续等待,如果完成擦除则清空状态寄存器。然后,状态机跳转到擦除完成判断状态,查看是否完成所需分区的擦除操作,没有完成则重复以上操作。如果所需分区的擦除已经完成,则跳转到擦除完成状态,等待进入 Flash 烧写与回读校验工作流程。

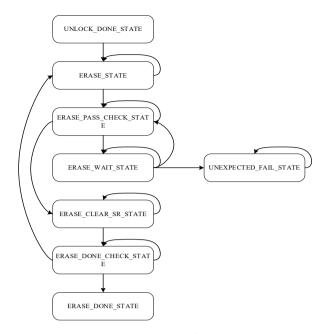


图 4 Flash 擦除工作流程

3.3 内容下发与校验

在 FPGA 完成 Flash 的擦除工作后,远端会向近端发送 数据传输请求包, 远端接收到近端的传输请求后会将数据按 照每包1kB的大小进行发送,经近端ESP8266芯片将下发 内容转换为无线传输,远端 ESP8266 芯片接收到发送的数据 包后会通过 UART 传送给远端的 FPGA, FPGA 计算该数据 包的校验和并与包尾附带的校验和进行比对, 如果一致则接 收该包数据, 否则要求重新传输。本实验中设计的最大重传 次数为10,即为单一数据包重传10次仍不能通过校验,则 认为传送失败, 当前网络状态不满足烧写要求, 工作流程退 出。上位机会择机重新开启 Flash 的烧写工作。

3.4 烧写与回读校验

本小节是整个 Flash 快速烧写方法的核心, 主要描述 Flash 快速烧写与回读校验逻辑。Flash 在执行完擦除操作并 接收到有效数据后,会自主执行 Flash 快速烧写与回读校验 过程,如图5所示。

整个操作流程可分为四步:

- (1) FPGA 接收远端 Wi-Fi 芯片通过 UART 串口传送来 的数据并存入 FIFO 中进行保存,以供回读校验使用。每 512 个 16 bit 字为一包,以充分利用 28F00AP30T 型 Flash 的 512 字大小的 SRAM 缓存空间,大幅提升 Flash 的写入速率。
- (2) FPGA 发送 SETUP 命令,并读状态寄存器确认命 令状态。通过控制一次发送的数据字的长度,将接收到的 512 个 16 bit 数据字依次写入 Flash 内。
 - (3) 发送 CONFIRM 命令,完成一个 512 字的烧写操作。
- (4) 最后执行回读操作,通过读 Flash 命令将回读到的 数据与 FPGA 片内 FIFO 中存储的下发数据进行逐字比对, 完成本包的回读校验工作。

重复以上烧写和回读校验过程, 直到所有数据都被写入 Flash 内,并全部通过回读校验, Flash 的烧写工作完成。

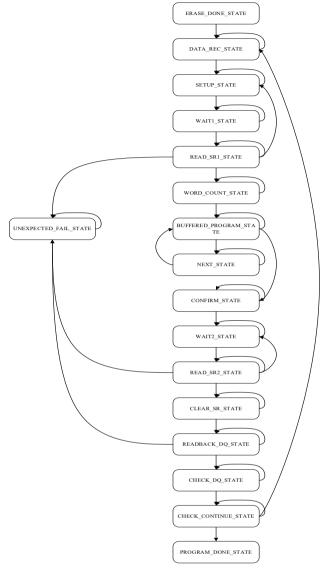


图 5 Flash 快速烧写与回读校验工作流程

3.5 分区锁定

Flash 烧写完成并经过校验 后,将所有分区锁定,以防止 误操作可能导致的存储数据的 改变,如图6所示。

4 平台验证

通过实际搭建验证平台, 并编写 FPGA 闪灯程序作为实

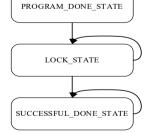


图 6 Flash 锁定工作流程

验用 Flash 快速烧写的上位机下发内容, 经多次 Wi-Fi 传输 和 Flash 快速烧写实验,观察在烧写完成后 FPGA 重新上电 时的 LED 灯工作状态,与编程要求的 1 Hz 闪烁频率一致, 故而验证 Wi-Fi 传输和 Flash 快速烧写的正确性。

5 总结

本文将无线数据传输技术与Flash快速烧写技术相结合,创新性的实现了非接触式 FPGA 快速烧写方法,可在不脱去外部罩子、不增加裸露的硬件连线的情况下实现 FPGA 软件的升级,未来可以扩展到更多类型器件中,具有较好的应用意义。

后续还可考虑使用 FPGA Multi-boot 技术 [10], 通过将 RS 管脚连接到 Flash 地址线的高两位, 使配置 Flash 划分为 多块不同分区, 防止意外烧写错误而导致 FPGA 无法正常 加载现象。

参考文献:

- [1] 戴政,陈小敏,廖志忠,等.基于 FPGA 的随机衰落及硬件 实时统计实现 [J]. 航空兵器, 2020, 27(2):71-76.
- [2]Micron Technology. PC28F00AP30TF datasheet[EB/OL]. [2024-06-21]. https://www.alldatasheet.com/datasheet-pdf/pdf/558688/MICRON/PC28F00AP30TF.html.
- [3] AMD. 7 series FPGAs configuration user guide (UG470)[EB/OL].(2023-12-05)[2024-06-25]. https://docs.amd.com/v/u/en-US/ug470 7Series Config.
- [4] NAIK K C, BABU J C, PADMAPRIYA K, et al. Implement-

- ing NAND flash controller using product reed solomon code on FPGA chip[J]. International journal ofengineering research and applications, 2013, 3(2): 224-229.
- [5] 李鹏, 兰巨龙. 用 CPLD 和 Flash 实现 FPGA 配置 [J]. 电子技术应用, 2006(6):101-103.
- [6] 关珊珊,周洁敏.基于 Xilinx FPGA 的 SPI Flash 控制器设计与验证[J]. 电子器件, 2012, 35(2): 216-220.
- [7] 康嘉. 基于 FPGA 配置的电路系统设计 [D]. 西安: 西安电子科技大学, 2014.
- [8] 郑吉华. 一种 FPGA 芯片在线更新配置电路及方法: CN202011134086.9[P]. 2021-02-05.
- [9] 刘宇波, 施文韬. 基于 FPGA 和 PowerPC 的 FPGA 启动加载 Flash 升级系统及方法 [P]. 2016-12-7.
- [10] 王群泽, 胡方明, 林汉成, 等. 基于 Flash 和 JTAG 接口的 FPGA 多配置系统 [J]. 单片机与嵌入式系统应用, 2011, 11(4): 37-40.

【作者简介】

王博(1993—), 男,河南鲁山人,硕士,工程师,研究方向: 嵌入式系统与雷达信号处理。

(收稿日期: 2024-11-14)

(上接第70页)

实验结果表明,在高分辨率遥感图像的语义分割这一复杂任务中,本文方法在实验指标上展现出良好的性能。在GID 数据集上的实验,所提出的方法的性能在所有准确性指标上超过了对比的基线方法。通过消融研究,评估多注意力模块的影响,结果表明多注意力模块能够明显提升分割效率。另外,多注意力模块所展示的资源效率使其能更普遍地应用在多种网络中。

参考文献:

- [1] 马震环. 深度学习技术在图像语义分割中的应用研究[D]. 成都:中国科学院大学,2020.
- [2] 张琛亮. 几类基于 Transformer 的遥感图像语义分割方法 研究 [D]. 南京: 南京信息工程大学,2023.
- [3] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[DB/OL]. (2017-12-05)[2024-06-16].https://doi.org/10.48550/arXiv.1706.05587.
- [4] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[J]. Computer vision ,2018,11211:833-851.

- [5] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J].IEEE transactions on pattern analysis and machine intelligence, 2017, 39(4):640-651.
- [6] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[J]. Medical image computing and computer-assisted intervention, 2015, 9351: 234-241.
- [7] LI R, ZHENG S Y, ZHANG C, et al. Multiattention network for semantic segmentation of fine-resolution remote sensing images [J]. IEEE transactions on geoscience and remote sensing, 2021, 60: 1-13.
- [8] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[DB/OL]. (2017-04-27)[2024-05-11]. https://doi. org/10.48550/arXiv.1612.01105.

【作者简介】

张垚杰(1993—), 男, 山西长治人, 硕士研究生, 助教, 研究方向: 深度学习、算法设计与分析。

(收稿日期: 2024-11-19)